Objective: To purify and identify the osteoclasts from the tissue of humangiant cell tumor of bone. Methods: We have developed a new method that allows the purification oflarge numbers of authentic osteoclasts (OCs). ...Objective: To purify and identify the osteoclasts from the tissue of humangiant cell tumor of bone. Methods: We have developed a new method that allows the purification oflarge numbers of authentic osteoclasts (OCs). The OCs were isolated from tissue of human giant celltumor of bone by 0.25% trypsin and collagenase. We characterized OCs in terms of the expression ofdifferent phenotypic markers of OCs. The phenotypic markers of OC included Tartrate-resistant acidphosphatase staining (TRAP). The expression of calcitonin receptor (CTR), cathepsin K and receptoractivator of necrosis factor κB (RANK) mRNA were examined by RT-PCR. Results: The OC cell purifiedby above method functioned normally in vitro. The purity was about 79.7%. They showed the normalosteoclast phenotypes markers of OC. Conclusion: The method provides a system for performingbiochemical and molecular studies of OCs. The study indicates that the method of purifying theosteoclasts from human GCT cell can be used for research of bone metabolism.展开更多
Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribut...Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.展开更多
Symmetry is conventionally described in a polarized manner that the system is either completely symmetric or completely asymmetric.Using group theoretical approach to overcome this dichotomous problem,we introduce the...Symmetry is conventionally described in a polarized manner that the system is either completely symmetric or completely asymmetric.Using group theoretical approach to overcome this dichotomous problem,we introduce the degree of symmetry(DoS) as a non-negative continuous number ranging from zero to unity.Do S is defined through an average of the fidelity deviations of Hamiltonian or quantum state over its transformation group G,and thus is computable by making use of the completeness relations of the irreducible representations of G.The monotonicity of Do S can effectively probe the extended group for accidental degeneracy while its multi-valued natures characterize some(spontaneous) symmetry breaking.展开更多
文摘Objective: To purify and identify the osteoclasts from the tissue of humangiant cell tumor of bone. Methods: We have developed a new method that allows the purification oflarge numbers of authentic osteoclasts (OCs). The OCs were isolated from tissue of human giant celltumor of bone by 0.25% trypsin and collagenase. We characterized OCs in terms of the expression ofdifferent phenotypic markers of OCs. The phenotypic markers of OC included Tartrate-resistant acidphosphatase staining (TRAP). The expression of calcitonin receptor (CTR), cathepsin K and receptoractivator of necrosis factor κB (RANK) mRNA were examined by RT-PCR. Results: The OC cell purifiedby above method functioned normally in vitro. The purity was about 79.7%. They showed the normalosteoclast phenotypes markers of OC. Conclusion: The method provides a system for performingbiochemical and molecular studies of OCs. The study indicates that the method of purifying theosteoclasts from human GCT cell can be used for research of bone metabolism.
基金Project supported by the National Natural Science Foundation of China(Nos.61473259,61502335,61070074,and60703038)the Zhejiang Provincial Natural Science Foundation(No.Y14F020118)the PEIYANG Young Scholars Program of Tianjin University,China(No.2016XRX-0001)
文摘Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11421063,11534002,11475254the National 973Program under Grant Nos.2014CB921403,2012CB922104,and 2014CB921202
文摘Symmetry is conventionally described in a polarized manner that the system is either completely symmetric or completely asymmetric.Using group theoretical approach to overcome this dichotomous problem,we introduce the degree of symmetry(DoS) as a non-negative continuous number ranging from zero to unity.Do S is defined through an average of the fidelity deviations of Hamiltonian or quantum state over its transformation group G,and thus is computable by making use of the completeness relations of the irreducible representations of G.The monotonicity of Do S can effectively probe the extended group for accidental degeneracy while its multi-valued natures characterize some(spontaneous) symmetry breaking.