The wave iterative method is a numerical method used in the electromagnetic modeling of high frequency electronic circuits. The object of the authors' study is to improve the convergence speed of this method by addin...The wave iterative method is a numerical method used in the electromagnetic modeling of high frequency electronic circuits. The object of the authors' study is to improve the convergence speed of this method by adding a new algorithm based on filtering techniques. This method requires a maximum number of iterations, noted Nmax, to achieve the convergence to the optimal value. This number wilt be reduced in order to reduce the computing time. The remaining iterations until Nmax will be calculated by the new algorithm which ensures a rapid convergence to the optimal result.展开更多
The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, ...The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, magnetic and thermal couplings from the constitutive circuitry. The consideration of these phenomena is very difficult at the design of the power supply. This paper presents two complementary methods based first on a circuitry model for the quantification of heat sources and secondly on finite element model for heat diffusion. This approach can help a designer in the goal of improving the performances and thermal stability of radar tied to the supply circuit subset.展开更多
As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult tha...As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult than for conventional integrated circuits.In this paper,a new method of testing for faults in nanocircuits is presented that uses single-photon detection to locate failed components(or failed signal lines)by utilizing the infrared photon emission characteristics of circuits.The emitted photons,which can carry information about circuit structure,can aid the understanding of circuit properties and locating faults.In this paper,in order to enhance the strength of emitted photons from circuit components,test vectors are designed for circuits’components or signal lines.These test vectors can cause components to produce signal transitions or switching behaviors according to their positions,thereby increasing the strength of the emitted photons.A multiple-valued decision diagram(MDD),in the form of a directed acrylic graph,is used to produce the test vectors.After an MDD corresponding to a circuit is constructed,the test vectors are generated by searching for specific paths in the MDD of that circuit.Experimental results show that many types of faults such as stuck-at faults,bridging faults,crosstalk faults,and others,can be detected with this method.展开更多
文摘The wave iterative method is a numerical method used in the electromagnetic modeling of high frequency electronic circuits. The object of the authors' study is to improve the convergence speed of this method by adding a new algorithm based on filtering techniques. This method requires a maximum number of iterations, noted Nmax, to achieve the convergence to the optimal value. This number wilt be reduced in order to reduce the computing time. The remaining iterations until Nmax will be calculated by the new algorithm which ensures a rapid convergence to the optimal result.
文摘The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, magnetic and thermal couplings from the constitutive circuitry. The consideration of these phenomena is very difficult at the design of the power supply. This paper presents two complementary methods based first on a circuitry model for the quantification of heat sources and secondly on finite element model for heat diffusion. This approach can help a designer in the goal of improving the performances and thermal stability of radar tied to the supply circuit subset.
基金supported by the National Natural Science Foundation of China(Grant No.61072028)the Project of the Department of Education of Guangdong Province(Grant No.2012KJCX0040)the Guangdong Province and Chinese Ministry of Education Cooperation Project of Industry,Education,and Academy(Grant No.2009B090300339)
文摘As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult than for conventional integrated circuits.In this paper,a new method of testing for faults in nanocircuits is presented that uses single-photon detection to locate failed components(or failed signal lines)by utilizing the infrared photon emission characteristics of circuits.The emitted photons,which can carry information about circuit structure,can aid the understanding of circuit properties and locating faults.In this paper,in order to enhance the strength of emitted photons from circuit components,test vectors are designed for circuits’components or signal lines.These test vectors can cause components to produce signal transitions or switching behaviors according to their positions,thereby increasing the strength of the emitted photons.A multiple-valued decision diagram(MDD),in the form of a directed acrylic graph,is used to produce the test vectors.After an MDD corresponding to a circuit is constructed,the test vectors are generated by searching for specific paths in the MDD of that circuit.Experimental results show that many types of faults such as stuck-at faults,bridging faults,crosstalk faults,and others,can be detected with this method.