In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system...In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.展开更多
We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k...We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.展开更多
基金Supported by Shandong Provincial Natural Science Foundation under Grant Nos. ZR2011AQ017 and ZR2010AM028
文摘In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171339 and 11171261)National Center for Mathematics and Interdisciplinary Sciences
文摘We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.