期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高考必考点化学方程式 被引量:1
1
作者 叶启凤 衷明华 《江西化工》 2015年第3期134-135,共2页
近年来,由于考纲的要求,每年都有一定的分值是关于化学方程式的,在这个以分数裁定未来的时代,化学方程式能否拿到高分就觉得了化学的分数,一定程度上也决定了高考的成败!
关键词 高考 方程式分类 技巧 态度
下载PDF
New Similarity Reduction Solutions for the(2+1)-Dimensional Nizhnik-Novikov-Veselov Equation 被引量:1
2
作者 智红燕 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第3期263-267,共5页
In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system... In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions. 展开更多
关键词 similarity reduction solution (2+1)-dimensional Nizknik-Novikov-Veselov equation multi-solitonlike solution
原文传递
Local solvability of the k-Hessian equations 被引量:3
3
作者 TIAN GuJi WANG Qi XU Chao-Jiang 《Science China Mathematics》 SCIE CSCD 2016年第9期1753-1768,共16页
We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k... We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions. 展开更多
关键词 k-Hessian equations local solution uniform ellipticity implicit function theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部