An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decom...An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decomposition and the Darboux transformation of two (1+1)-dimensional soliton systems, some interesting explicit solutions of these soliton equations are obtained.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to t...Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.展开更多
The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types...The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.展开更多
In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Sc...In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).展开更多
This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-convent...This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by s...Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general an...This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.展开更多
In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t...In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.展开更多
基金the Special Funds for Major State Basic Research Project of China under No.G2000077301
文摘An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decomposition and the Darboux transformation of two (1+1)-dimensional soliton systems, some interesting explicit solutions of these soliton equations are obtained.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
文摘Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.10905019the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,No.IRT0964)the Construct Program of the National Key Discipline
文摘The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.
基金Foundation item: Supported by the National Natural Science Foundation of China(40537034)
文摘In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).
文摘This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
基金Supported by Colleges and Universities Scientific Research Foundation of Inner Mongolia Autonomous Region under Grant N0. NJZY07139Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 200408020113
文摘Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
文摘This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.
文摘In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.