The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft ...The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft symmetry energy, where the non-Newtonian gravity proposed in the grand unification theories is also considered. Constrained by the observations of the masses and the spin frequencies for neutron stars, the boundary of the r-mode instability window for a canonical neutron star is obtained, and the results show that the observed neutron stars are all outside the instability window, which is consistent with the theoretical expectation. In addition, an upper limit of the non-Newtonian gravity parameters is also given.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10947023 and 11275073the Fundamental Research Funds for the Central Universities under Grant No. 2012ZZ0079the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft symmetry energy, where the non-Newtonian gravity proposed in the grand unification theories is also considered. Constrained by the observations of the masses and the spin frequencies for neutron stars, the boundary of the r-mode instability window for a canonical neutron star is obtained, and the results show that the observed neutron stars are all outside the instability window, which is consistent with the theoretical expectation. In addition, an upper limit of the non-Newtonian gravity parameters is also given.