期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
融合多元文本信息和注意力机制的方面级情感分类方法
1
作者 冯勇 徐健航 +1 位作者 王嵘冰 徐红艳 《计算机与数字工程》 2024年第3期903-908,共6页
为了解决当前情感分类方法对于文本信息利用不充分并且缺乏对用户偏好的考虑从而导致情感分类准确率不高的问题,论文引入注意力机制来处理多元文本,并利用SRNN模型来充分地提取文本的隐藏特征,提出了一种融合多元文本信息和注意力机制... 为了解决当前情感分类方法对于文本信息利用不充分并且缺乏对用户偏好的考虑从而导致情感分类准确率不高的问题,论文引入注意力机制来处理多元文本,并利用SRNN模型来充分地提取文本的隐藏特征,提出了一种融合多元文本信息和注意力机制的方面级情感分类方法。该方法以电商平台为研究对象,综合利用商品简介文本和用户评论文本,首先利用注意力机制使两种文本信息互相作用,得到融合了多元文本的表示向量;然后分别在正向和反向上进行处理以充分地提取文本的隐藏特征;最后对评论信息中涉及的不同方面分别以对应的方面处理模块进行训练,根据用户偏好得到其最感兴趣的方面,将特征向量输入该方面处理模块中,进行方面级情感极性计算,最终得到情感分类结果。论文在豆瓣数据集上进行了对比实验,实验结果表明,论文所提方法在准确率和F1值上相较于当前主流的基于LSTM、CNN的方法都有明显提升。 展开更多
关键词 情感分类 方面 多元文本 注意力机制 SRNN
下载PDF
基于语义-注意力机制的方面级情感分类
2
作者 张换香 刘璐瑶 +1 位作者 张景 惠丽峰 《计算机仿真》 2024年第7期366-375,共10页
现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语... 现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。 展开更多
关键词 方面情感分类 服务领域 语义依存分析 剪枝 注意力机制
下载PDF
使用方面引导图注意网络的方面级情感分类模型
3
作者 赵源 李卫疆 《小型微型计算机系统》 CSCD 北大核心 2024年第1期101-107,共7页
方面级情感分类的任务是判断给定方面的情感极性,图注意网络是处理句法信息的有效手段,然而传统图注意神经网络在通过中间节点聚合与方面间接相邻的信息时,并不直接考虑该节点与方面的相关性,这将导致不相关信息过多传递到最终表示,影... 方面级情感分类的任务是判断给定方面的情感极性,图注意网络是处理句法信息的有效手段,然而传统图注意神经网络在通过中间节点聚合与方面间接相邻的信息时,并不直接考虑该节点与方面的相关性,这将导致不相关信息过多传递到最终表示,影响分类效果.本文提出了使用方面引导图注意网络的方面级情感分类模型,首先使用多头自注意编码学习文本句内表示,然后使用方面引导图注意网络对情感信息进行聚合,同时使用了语义注意力模块突出浅层网络中可能被遮蔽注意力遗漏的情感信息,结合生成最终表示进行分类预测.本文通过公开数据集上的实验证明本文模型具有更好的效果,进而通过实验验证了方面引导图注意网络相比传统图注意网络在方面级情感分类中具有更优的性能以及其它组件的有效性. 展开更多
关键词 方面 情感分析 情感分类 方面引导 图注意网络
下载PDF
基于融合对抗网络的方面级情感分类方法
4
作者 张华辉 冯林 荆沁璐 《中文信息学报》 CSCD 北大核心 2024年第7期147-157,共11页
方面级情感分类是一种细粒度的情感分析任务,旨在分类出文本中不同方面的情感。目前,现有方面级情感分类模型存在特征提取层次浅、泛化能力弱等问题。为此,该文提出一种基于融合对抗网络的方面级情感分类模型ASFAN(Aspect-level Sentime... 方面级情感分类是一种细粒度的情感分析任务,旨在分类出文本中不同方面的情感。目前,现有方面级情感分类模型存在特征提取层次浅、泛化能力弱等问题。为此,该文提出一种基于融合对抗网络的方面级情感分类模型ASFAN(Aspect-level Sentiment classification model based on Fusion Adversarial Networks)。首先,从数据集中提取文本的方面词、位置、上下文信息表示。其次,将方面词、位置、上下文信息通过BERT编码。最后,通过多头注意力和局部注意力机制提取文本特征,将特征进行融合学习。此外,通过对抗学习算法生成对抗样本,将对抗样本作为一种文本数据增强样本,优化决策边界。实验结果表明,在SemEval 2014的Restaurant、Laptop数据集和ACL-2014的Twitter数据集上,ASFAN的准确率分别达86.54%、79.15%、76.16%,ASFAN对比大多数基线模型性能提升显著。 展开更多
关键词 方面情感分类 注意力机制 融合对抗网络 BERT 对抗样本
下载PDF
基于句信息增强词信息的方面级情感分类
5
作者 李怡霖 孙成胜 +1 位作者 罗林 琚生根 《计算机科学》 CSCD 北大核心 2024年第6期299-308,共10页
方面级情感分类属于细粒度的情感分类,旨在判断句子中指定方面词的情感极性。近年来,句法知识在方面级情感分类任务中得到了广泛应用。目前主流的模型利用句法依存树和图卷积神经网络进行情感极性的分类。然而,此类模型着眼于利用聚合... 方面级情感分类属于细粒度的情感分类,旨在判断句子中指定方面词的情感极性。近年来,句法知识在方面级情感分类任务中得到了广泛应用。目前主流的模型利用句法依存树和图卷积神经网络进行情感极性的分类。然而,此类模型着眼于利用聚合后的方面词信息来判断情感极性,很少关注句子的全局信息对情感极性的影响,从而导致情感极性分类结果出现偏差。为了解决这一问题,提出了一种基于句信息增强词信息的方面级情感分类模型,该模型通过对比学习对句向量进行表示学习,以减小句向量对比损失为目标调整词向量的特征表示,最后通过图卷积神经网络聚合意见词信息得出情感分类结果。在SemEval2014数据集和Twitter数据集上进行实验,结果表明,所提模型可以提高分类的准确性,综合验证了该方法的有效性。 展开更多
关键词 方面情感分类 句信息 词信息 对比学习 图卷积神经网络
下载PDF
结合BERT语义融合和关键词特征提取的方面级情感分类研究
6
作者 胡耀庭 韩雨桥 +2 位作者 石宇航 高宣 彭玉青 《网络安全与数据治理》 2024年第11期29-36,共8页
方面级情感分类旨在确定句子中给定方面词的情感极性。该任务先前提出的方法无法提取语义信息丰富的上下文初始表示向量,同时也不能精确地捕获局部关键特征的范围。因此,提出了一种结合BERT语义融合(BERTSF)和关键词特征提取(KFE)的方... 方面级情感分类旨在确定句子中给定方面词的情感极性。该任务先前提出的方法无法提取语义信息丰富的上下文初始表示向量,同时也不能精确地捕获局部关键特征的范围。因此,提出了一种结合BERT语义融合(BERTSF)和关键词特征提取(KFE)的方面级情感分类模型(KFE-BERTSF)。BERTSF通过门控融合函数融合BERT编码器的高层语义信息,以提取语义信息更加丰富的上下文初始表示向量。KFE通过动态阈值划分句子的局部上下文和非局部上下文,并利用句法距离掩码(SDMask)和距离感知注意力(ADA)提取两个区域的局部关键特征。基于三个数据集上的实验结果表明,KFE-BERTSF取得了比基准模型更好的成绩。 展开更多
关键词 方面情感分类 BERT编码器 关键词特征 局部上下文聚焦
下载PDF
面向方面级情感分类的多层注意网络 被引量:9
7
作者 郑诚 曹源 薛满意 《计算机工程与应用》 CSCD 北大核心 2020年第19期176-181,共6页
特定于某一方面的情感分类是情感分析领域中的一项细粒度任务。深层的神经网络可以更好地提取上下文特征与方面特征,同时利用Attention机制可以根据上下文特征和方面特征不同的重要性赋予相应的权重值。模型着重从提取上下文与方面特征... 特定于某一方面的情感分类是情感分析领域中的一项细粒度任务。深层的神经网络可以更好地提取上下文特征与方面特征,同时利用Attention机制可以根据上下文特征和方面特征不同的重要性赋予相应的权重值。模型着重从提取上下文与方面特征和更好地融合上下文与方面向量入手,提出了一种混合提取与多层注意的深度神经网络。基于Bi-LSTM和CNN在提取特征方面都有显著的成效,引入两种网络的合并模型。最后,在经典的Laptop,Resteraunt和Twitter数据集上进行了验证,展示了比基准模型更好地分类效果。 展开更多
关键词 方面 情感分类 多层注意
下载PDF
基于上下文保持能力的方面级情感分类模型 被引量:6
8
作者 何丽 房婉琳 张红艳 《模式识别与人工智能》 EI CSCD 北大核心 2021年第2期157-166,共10页
方面级情感分类可发现语句在不同方面隐藏的情感特征.文中基于特定方面的图卷积网络的框架,构建基于上下文保持能力的方面级情感分类模型.在图卷积层中引入上下文门控单元,整合前一层输出中的有用信息.在基于图卷积网络的模型中加入多... 方面级情感分类可发现语句在不同方面隐藏的情感特征.文中基于特定方面的图卷积网络的框架,构建基于上下文保持能力的方面级情感分类模型.在图卷积层中引入上下文门控单元,整合前一层输出中的有用信息.在基于图卷积网络的模型中加入多粒度注意力计算模块,描述方面词与上下文在情感表达上的相互关系.在5个公开数据集上的实验表明,文中模型在分类准确率和F1宏平均指标上均表现较优. 展开更多
关键词 方面情感分类 图卷积网络 多粒度注意力计算 上下文保持能力
下载PDF
面向方面级情感分类的特征融合学习网络 被引量:1
9
作者 陈金广 赵银歌 马丽丽 《模式识别与人工智能》 CSCD 北大核心 2021年第11期1049-1057,共9页
在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器... 在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器得到输入的向量表示后,使用注意力编码器进行上下文和方面词的建模,获取隐藏状态,提取语义信息.然后,基于隐藏状态特征,采用方面转换组件生成方面级特定的文本向量表示,将方面信息融入上下文表示中.最后,对于方面级特定的文本向量通过文本位置加权模块提取局部特征后,与全局特征进行融合学习,得到最终的表示特征,并进行情感分类.在英文数据集和中文评论数据集上的实验表明,文中网络提升分类效果. 展开更多
关键词 方面情感分类 双向Transformer的表征编码器(BERT) 注意力编码器 局部特征提取 特定方面转换
下载PDF
基于BiGCN和IAM的方面级情感分类模型 被引量:4
10
作者 杨春霞 瞿涛 吴佳君 《计算机工程与应用》 CSCD 北大核心 2022年第11期178-186,共9页
目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题... 目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题,提出了基于双向图卷积网络(BiGCN)和交互注意力机制(IAM)的方面级情感分类模型(BiGCN-IAM),该模型在句法依存树上使用双向图卷积网络提取上下文单词和方面词之间的句法依存关系,然后使用掩码层得到特定的方面词表示;最后使用交互注意力机制学习上下文与方面词之间的交互信息,同时提取了上下文中的重要情感特征和方面词中对分类有贡献的特征。通过在五个公开数据集上的实验证明,该模型效果优于基线模型。 展开更多
关键词 方面情感分类 交互注意力机制 双向图卷积神经网络 句法依存树
下载PDF
基于词级交互注意力机制的方面级情感分类模型 被引量:2
11
作者 杨春霞 瞿涛 李欣栩 《小型微型计算机系统》 CSCD 北大核心 2022年第7期1432-1437,共6页
方面级情感分类旨在判断句子中每个具体方面的情感极性.传统的注意力机制模型可能会给句子中重要情感词分配过低的注意力权重,而且很少考虑上下文与方面词的交互信息.针对第1个问题,本文改进了传统的输入方式,以方面词为界限,将句子划... 方面级情感分类旨在判断句子中每个具体方面的情感极性.传统的注意力机制模型可能会给句子中重要情感词分配过低的注意力权重,而且很少考虑上下文与方面词的交互信息.针对第1个问题,本文改进了传统的输入方式,以方面词为界限,将句子划分成包含方面词的上文、方面词和包含方面词的下文3部分作为输入,分别提取上文或下文中的重要情感特征.针对第2个问题,本文提出了词级交互注意力机制,分别学习上文与方面词、下文与方面词的词级交互,得到特定于方面的上文表示和下文表示向量,最后将它们拼接得到特定于方面的上下文表示向量,作为方面级情感分类特征.通过在3个标准数据集上的实验证明,本文的模型性能优于基线模型. 展开更多
关键词 方面情感分类 上下文 方面 双向长短期记忆网络 交互注意力机制
下载PDF
基于句法结构树和混合注意力网络的方面级情感分类 被引量:1
12
作者 李卫疆 吴宇宸 《中文信息学报》 CSCD 北大核心 2023年第5期143-156,共14页
在目前方面级别情感分类的研究方法中,大部分是基于循环神经网络或单层注意力机制等方法,忽略了位置信息对于特定方面词情感极性的影响,并且此类方法编码语句和方面词时直接采用了拼接或者相乘的方式,导致处理长句子时可能会丢失信息以... 在目前方面级别情感分类的研究方法中,大部分是基于循环神经网络或单层注意力机制等方法,忽略了位置信息对于特定方面词情感极性的影响,并且此类方法编码语句和方面词时直接采用了拼接或者相乘的方式,导致处理长句子时可能会丢失信息以及无法捕获深层次情感特征。为了解决上述问题,该文提出了基于句法结构树和混合注意力网络的模型,其基本思想是将基于句法结构树构建的位置向量作为辅助信息,并提出混合注意力网络模型来提取句子在给定方面词下的情感极性。所以该文设计了浅层和深层网络,并分别构建位置注意力机制和交互型多头注意力机制获取句子中和方面词相关的语义信息。实验结果表明:大多数情况下,该模型在SemEval 2014公开数据集中的Restaurant和Laptop以及ACL14 Twitter上的表现优于相关基线模型,可以有效地识别不同方面的情感极性。 展开更多
关键词 方面情感分类 句法结构树 混合网络 交互型多头注意力
下载PDF
基于混合图神经网络的方面级情感分类
13
作者 唐恒亮 尹棋正 +2 位作者 常亮亮 薛菲 曹阳 《计算机工程与应用》 CSCD 北大核心 2023年第4期175-182,共8页
目前在方面级情感分类研究中,图卷积网络被应用于句法依赖树上构建方面词与上下文词的依赖关系。但是由于句法依赖树的不稳定性和语句的复杂性与不规范表达,这种改进较为有限。为解决上述问题,提出了一种基于混合图神经网络模型。在该... 目前在方面级情感分类研究中,图卷积网络被应用于句法依赖树上构建方面词与上下文词的依赖关系。但是由于句法依赖树的不稳定性和语句的复杂性与不规范表达,这种改进较为有限。为解决上述问题,提出了一种基于混合图神经网络模型。在该模型中,为了深度提取方面词与上下文词的依赖关系,设计了应用于句法依赖树的多层图卷积网络。同时为提取词级依赖特征,设计了具有残差连接的图注意力网络(Res-GAT),其主要思想为以词级依赖关系特征作为补充,结合句法依赖关系进行方面级情感分类。通过在五个经典数据集上实验,证明了该模型相较于基线模型具有更优异的分类能力。 展开更多
关键词 方面情感分类 句法依赖树 图卷积网络(GCN) 图注意力网络(GAT)
下载PDF
面向上下文注意力联合学习网络的方面级情感分类模型 被引量:11
14
作者 杨玉亭 冯林 +1 位作者 代磊超 苏菡 《模式识别与人工智能》 EI CSCD 北大核心 2020年第8期753-765,共13页
针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、... 针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、句子对和方面词级输入序列,分别经过BERT单句和句子对分类模型,进行上下文、方面词级和句子对隐藏特征提取.再基于上下文和方面词级隐藏特征,建立上下文和方面词的多种注意力机制,获取方面特定的上下文感知表示.然后,对句子对隐藏特征和方面特定的上下文感知表示进行联合学习.采用Xavier正态分布对权重进行初始化,确保反向传播时参数持续更新,使CAJLN在训练过程中可以学习有用信息.在多个数据集上的仿真实验表明,CAJLN可有效提升短文本情感分类性能. 展开更多
关键词 方面情感分类 双向Transformer的表征编码器(BERT)模型 注意力机制 联合学习
下载PDF
端到端方面级情感分析综述
15
作者 潘美琦 马致远 +1 位作者 刘高飞 秦纪伟 《小型微型计算机系统》 CSCD 北大核心 2024年第3期732-746,共15页
方面级情感分析作为一种重要的细粒度情感分析任务,旨在从方面层面分析和理解用户的观点,近年来受到学术界和工业界的广泛关注.端到端方面级情感分析是方面级情感分析的一个重要分支,目的是同时提取方面术语并确定其情感极性.然而,目前... 方面级情感分析作为一种重要的细粒度情感分析任务,旨在从方面层面分析和理解用户的观点,近年来受到学术界和工业界的广泛关注.端到端方面级情感分析是方面级情感分析的一个重要分支,目的是同时提取方面术语并确定其情感极性.然而,目前尚缺乏单独对其现有方法的系统分类和性能比较的综述文章.针对这一现状,本文首先概述了方面级情感分析任务的定义及相关研究,并归纳了该领域现有数据集的情况.在此基础上,本文分别对不同类型的端到端方面级情感分析方法进行了归纳和总结,并进一步通过不同数据集上的对比介绍了不同方法的性能.最后,本文针对现有方法的发展进行了总结,归纳了当前研究仍然面临的挑战,并指出了未来研究可能的方向. 展开更多
关键词 方面情感分析 深度学习 方面提取 情感分类
下载PDF
融入词性自注意力机制的方面级情感分类方法 被引量:2
16
作者 杜孟洋 王红斌 普祥和 《吉林大学学报(理学版)》 CAS 北大核心 2023年第6期1375-1386,共12页
针对基于注意力机制的模型在方面级情感分类任务中忽略了单词词性信息的问题,提出一种融入词性自注意力机制的方面级情感分类方法.该方法首先基于自然语言处理词性标注工具获得词性标注序列,并随机初始化一个词性嵌入矩阵得到词性嵌入向... 针对基于注意力机制的模型在方面级情感分类任务中忽略了单词词性信息的问题,提出一种融入词性自注意力机制的方面级情感分类方法.该方法首先基于自然语言处理词性标注工具获得词性标注序列,并随机初始化一个词性嵌入矩阵得到词性嵌入向量;然后用自注意力机制学习单词之间的句法依赖关系;最后计算出每个单词的情感分数,利用词情感的结合表示特定方面的情感极性.实验结果表明,在5个公共数据集上,该方法相比效果最好的基线模型,在准确率和宏观F_(1)分数上分别提升2%和4.83%.表明融入词性信息的注意力机制模型在方面级情感分类任务中性能更好. 展开更多
关键词 方面情感分类 词性嵌入 自注意力机制 情感分数
下载PDF
基于对抗学习的自适应加权方面级情感分类算法 被引量:2
17
作者 张华辉 冯林 +2 位作者 廖凌湘 刘鑫磊 王俊 《小型微型计算机系统》 CSCD 北大核心 2023年第4期766-772,共7页
方面级情感分类是自然语言处理研究领域的一个热点问题,旨在分类出文本中不同方面的情感.目前,大多数深度神经网络情感分类模型都采用均值注意力机制,这导致情感词不能有效获得相应权重的问题.为此,提出一种基于对抗学习的自适应加权方... 方面级情感分类是自然语言处理研究领域的一个热点问题,旨在分类出文本中不同方面的情感.目前,大多数深度神经网络情感分类模型都采用均值注意力机制,这导致情感词不能有效获得相应权重的问题.为此,提出一种基于对抗学习的自适应加权方面级情感分类模型AWSCM(Adaptive Weighted aspect-level Sentiment Classification Model based on adversarial learning),旨在自适应地学习文本权重.首先,将训练文本预处理成方面词、句子、句子对形式的输入,通过BERT对输入编码.然后,通过对抗学习算法和训练文本计算扰动生成对抗样本.最后,通过注意力机制提取训练文本和对抗样本编码后的深层文本特征和自适应权重,再进行联合学习.实验结果表明,和大多数深度神经网络情感分类模型相比,AWSCM能提升情感分类的准确性.同时,通过消融实验,证明了AWSCM结构设计的合理性. 展开更多
关键词 方面情感分类 注意力机制 BERT 对抗学习 自适应学习
下载PDF
基于AWI和GCN的方面级情感分类模型 被引量:1
18
作者 王泽 孔韦韦 +2 位作者 薛佳伟 平稳 李龙 《计算机工程与应用》 CSCD 北大核心 2023年第3期135-142,共8页
目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(grap... 目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。 展开更多
关键词 方面情感分类 方面词交互 图卷积网络 注意力机制 句法依存树
下载PDF
AOA-BERT:一种基于对抗学习的方面级情感分类方法 被引量:1
19
作者 张华辉 冯林 《小型微型计算机系统》 CSCD 北大核心 2023年第9期1983-1988,共6页
方面级情感分类是一种细粒度的情感分析任务,旨在分析出文本不同方面的情感.针对方面级情感分类模型存在分类精度低、泛化性弱等问题,提出基于对抗学习的AOA-BERT方面级情感分类模型(Attention-Over-Attention-BERT for aspect-level se... 方面级情感分类是一种细粒度的情感分析任务,旨在分析出文本不同方面的情感.针对方面级情感分类模型存在分类精度低、泛化性弱等问题,提出基于对抗学习的AOA-BERT方面级情感分类模型(Attention-Over-Attention-BERT for aspect-level sentiment classification model based on adversarial learning,AOA-BERT).首先,将文本和方面词单独建模,通过BERT编码提取隐含层特征.其次,将隐含层特征放入AOA(Attention-Over-Attention)网络提取权重向量.最后,将权重向量与建模后的文本特征向量相乘,并做交叉熵损失、回传参数.此外,通过对抗学习算法生成和学习对抗样本,作为一种文本数据增强方法,优化决策边界.实验结果表明,和大多数深度神经网络情感分类模型相比,AOA-BERT能提升情感分类的准确性.同时,通过消融实验,证明了AOA-BERT结构设计的合理性. 展开更多
关键词 方面情感分类 AOA BERT 对抗样本 深度神经网络
下载PDF
基于胶囊网络的方面级情感分类研究 被引量:4
20
作者 徐志栋 陈炳阳 +1 位作者 王晓 张卫山 《智能科学与技术学报》 2020年第3期284-292,共9页
由于文本中多种情感极性混合而难以判断,方面级情感分析成为当前研究的热点。考虑到多面句表达时会在一定程度上对不同目标的多重情感造成特征重叠,进而影响文本情感分类效果,提出一种基于胶囊网络的方面级情感分类模型(SCACaps)。模型... 由于文本中多种情感极性混合而难以判断,方面级情感分析成为当前研究的热点。考虑到多面句表达时会在一定程度上对不同目标的多重情感造成特征重叠,进而影响文本情感分类效果,提出一种基于胶囊网络的方面级情感分类模型(SCACaps)。模型使用序列卷积分别提取上下文和方面词的特征,同时引入交互注意力机制,减少二者对彼此的影响,并对文本特征表示进行重构后传入胶囊网络。胶囊层间通过引入高层胶囊系数对路由算法进行优化,整个迭代更新过程的参数全局共享,以保存较完整的文本特征信息。通过与多个模型进行对比实验发现,SCACaps的分类效果最佳,同时,在小样本学习中SCACaps也有较好的表现。 展开更多
关键词 胶囊网络 序列卷积 交互注意力 方面 情感分类
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部