期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
水利施工事故文本智能分析的BERT-BiLSTM混合模型
被引量:
14
1
作者
刘婷
张社荣
+3 位作者
王超
李志竑
关炜
王枭华
《水力发电学报》
CSCD
北大核心
2022年第7期1-12,共12页
水利工程施工往往具有施工环境复杂、施工难度大的特点,施工事故频发。事故报告作为事故分析的文件,通常包含了事故发生的总结和原因,可以作为预防事故发生的依据。然而,目前水利领域的事故分析多依赖于现场管理人员的手工分析,不仅容...
水利工程施工往往具有施工环境复杂、施工难度大的特点,施工事故频发。事故报告作为事故分析的文件,通常包含了事故发生的总结和原因,可以作为预防事故发生的依据。然而,目前水利领域的事故分析多依赖于现场管理人员的手工分析,不仅容易出错,而且耗时耗力。此外,现有的模型无法直接对水利事故文本进行高精度的分析和预测。因此,本文提出了一种结合变压器双向编码表示(BERT)和双向长短时记忆模型(BiLSTM)的混合深度学习模型深入分析水利工程施工事故原因。混合模型的上游采用BERT模型生成事故文本的字符级动态特征向量,模型下游基于改进的BiLSTM模型挖掘事故报告文本的语义特征,实现事故报告文本智能分析。最后,通过将本文提出的模型和目前先进的七种深度学习模型进行实验对比,对所提出的混合模型的有效性进行验证。结果表明,本文提出的混合模型优于其他几种深度学习算法,该模型可为水利施工事故的分析与决策提供算法支撑和依据。
展开更多
关键词
施工事故文本
智能分析
深度学习
BERT
BiLSTM
自然语言处理
下载PDF
职称材料
题名
水利施工事故文本智能分析的BERT-BiLSTM混合模型
被引量:
14
1
作者
刘婷
张社荣
王超
李志竑
关炜
王枭华
机构
天津大学水利工程仿真与安全国家重点实验室
天津大学建筑工程学院
水利部南水北调规划设计管理局
出处
《水力发电学报》
CSCD
北大核心
2022年第7期1-12,共12页
基金
云南省重点研发计划(2018BA066)。
文摘
水利工程施工往往具有施工环境复杂、施工难度大的特点,施工事故频发。事故报告作为事故分析的文件,通常包含了事故发生的总结和原因,可以作为预防事故发生的依据。然而,目前水利领域的事故分析多依赖于现场管理人员的手工分析,不仅容易出错,而且耗时耗力。此外,现有的模型无法直接对水利事故文本进行高精度的分析和预测。因此,本文提出了一种结合变压器双向编码表示(BERT)和双向长短时记忆模型(BiLSTM)的混合深度学习模型深入分析水利工程施工事故原因。混合模型的上游采用BERT模型生成事故文本的字符级动态特征向量,模型下游基于改进的BiLSTM模型挖掘事故报告文本的语义特征,实现事故报告文本智能分析。最后,通过将本文提出的模型和目前先进的七种深度学习模型进行实验对比,对所提出的混合模型的有效性进行验证。结果表明,本文提出的混合模型优于其他几种深度学习算法,该模型可为水利施工事故的分析与决策提供算法支撑和依据。
关键词
施工事故文本
智能分析
深度学习
BERT
BiLSTM
自然语言处理
Keywords
construction accident text
intelligent analysis
deep learning
BERT
BiLSTM
natural language processing
分类号
TV51 [水利工程—水利水电工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
水利施工事故文本智能分析的BERT-BiLSTM混合模型
刘婷
张社荣
王超
李志竑
关炜
王枭华
《水力发电学报》
CSCD
北大核心
2022
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部