The excavation for the municipal tunnel will disturb the soil around the tunnel,and the deformation and subsidence of the earth surface always take place,which may lead to instability and even collapse for the buildin...The excavation for the municipal tunnel will disturb the soil around the tunnel,and the deformation and subsidence of the earth surface always take place,which may lead to instability and even collapse for the building above the tunnel. At the same time the deformation and subsidence of the earth surface affect the normal use of underground municipal pipelines,and may cause the road sudden collapse,leading to significantly traffic accidents. The authors did a research by simulating for the excavation of municipal tunnel and designed the related supporting plan,and put forward some suggestions and measures for the design and construction of urban tunnel.展开更多
An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China w...An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.展开更多
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util...Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.展开更多
文摘The excavation for the municipal tunnel will disturb the soil around the tunnel,and the deformation and subsidence of the earth surface always take place,which may lead to instability and even collapse for the building above the tunnel. At the same time the deformation and subsidence of the earth surface affect the normal use of underground municipal pipelines,and may cause the road sudden collapse,leading to significantly traffic accidents. The authors did a research by simulating for the excavation of municipal tunnel and designed the related supporting plan,and put forward some suggestions and measures for the design and construction of urban tunnel.
基金Foundation item: Project(1220BAK10B06) supported by the National "Twelfth Five-Year" Plan for Science & Technology Support Program of China Project(20100101110026) supported by the PhD Programs Foundation of Ministry of Education of China Project(2009RS0050) supported by the Key Innovation Team Support Fund of Zhejiang Province, China
文摘An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.
文摘Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.