[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carb...[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carbon circulation model for orchard eco-system. [Method] The effects of nitrogen treatments on soil organic carbon mineralization of citrus orchard soil were investigated under 10, 20, 30 ℃ by laboratory simulated experiment. [Result] The mineralization rate decreased quickly at the be- ginning of the experiment but remained stable at the late period under three temper- ature treatments. The amounts of CO2 ranged from 1 328.25-2 219.42 mg/kg under three temperature condition, and the amount of soil organic carbon mineralization of 100 mg/kg (N4) treatment was the greatest, while that of CK was the lowest. High level nitrogen treatment (N4 and N3) were significant higher than the lower level nitro- gen treatment (N2 and N1). The soil organic carbon mineralization rate increased with the temperature from 10 to 30℃. The dependence of soil carbon mineralization to temperature (Q10) was different under different nitrogen treatments that the Qlo value of N2 treatment was the lowest while that of the N4 treatment was the greatest. The soil organic carbon mineralization in Citrus orange orchard soil was affected significantly by high level nitrogen treatment, but with no significance under lower nitrogen treatment. [Conclusion] The dependence of soil carbon mineralization to temperature (Q10) increased with the increasing nitrogen input. The combination of nitrogen with temperature may increase the CO2 emission from Citrus orchard soil.展开更多
In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, ...In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, alkaline salt content, optimal irrigation, gypsum conversion, gypsum and soil treatment and improvement depth. The ions on the obtained filtrate were analyzed in terms of salts. The improving ef- ficiency of gypsum for meadow alkali soil was analyzed through comparing the con- tents of soluble salts in pre-improvement and post-improvement soil by reasoning and calculation. The results showed that, (1) the dissolved amount and conversion amount of gypsum were increased, and the soil alkalinity was decreased corre- spondingly with the increased irrigation amount. However, after reaching a certain extent, the linear relationships became unobvious gradually. Therefore, the irrigation amount should be arranged reasonably for different treatment. (2) Compared with those at low temperature, the dissolved amount of gypsum at high temperature was increased by 1.47-1.50 times, the release amount of exchangeable sodium was in- creased by 2.98-4.70 times, and the release amount of exchangeable magnesium was increased by 2.07-2.90 times. In overall, the improving efficiency of gypsum in summer was better. However, gypsum had two shortcomings in summer. First, a large amount of gypsum leaked away. Second, a large amount of exchangeable magnesium, along with exchangeable sodium, was substituted by gypsum. (3) Compared with the other two treatments, treatment B (mixing gypsum and top 20- cm soil) showed the best improving efficiency, and it was characterized by stepwise dealkalization from top to down. In addition, mixing gypsum and topsoil is more practical in the production.展开更多
Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were design...Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were designed, including natural ventilation through transoms, forced ventilation via fans, and cooling by hyperbaric spray system. Specifically, the latter intermittent auto-pressurized spray system developed in our lab, which could spray successively via pressure from storage tubes without wetting the fermentation bed, is suitable for the promotion with the deep-litter technology in rural regions , since the power consumption is only 1 kwh per day.展开更多
Lop Nur potash mine greening projects is located in the heart of the Lop Nur, known as the "green zone ban". The project overcomes the extreme drought, high temperature, gale and dust salt and salt, and many other a...Lop Nur potash mine greening projects is located in the heart of the Lop Nur, known as the "green zone ban". The project overcomes the extreme drought, high temperature, gale and dust salt and salt, and many other adverse environmen- tal factors. Adopted the suitable salt improvement measures and management tech- nology, the artificial green has emerged in the sea of death. At the same time the greening project improved the office environment of mining area, and shaped ex- treme environment greening projects successful cases.展开更多
The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into ...The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.展开更多
According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in th...According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.展开更多
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention...It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.展开更多
Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark...Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark self-energy Σ_f and tie structure of non-local quark vacuumcondensate 【 0 | : q(x)q(0) : | 0 】 are investigated. The algebraic form of the quark propagatorproposed in this work describes a confining quark propagation, and is quite convenient to be used inany numerical calculations.展开更多
In this study, the green energy saving of greenhouse sensor node is de- signed to reduce the system power consumption and high efficiency. The green renewable solar energy resources are used as the energy source of no...In this study, the green energy saving of greenhouse sensor node is de- signed to reduce the system power consumption and high efficiency. The green renewable solar energy resources are used as the energy source of nodes; the lowenergy consumed and cost effective MSP430 chip is used as the main control chip of the processor unit; the transmission frequency of the wireless transmission unit is 433 MHz, which has the characteristics of low power consumption, high signal strength, long transmission distance and small signal attenuation during the transmission; the power supply system unit is composed of monocrystalline silicon solar panel and high performance rechargeable lithium ion battery. The selection basis of each unit is clarified in detail, and optimization is performed by hardware circuit and software program to further reduce power consumption. The power consumption of the node is calculated by the experiment, and the charging conditions of the solar panel used in the node is tested. The results show that the system can achieve the setting target through the selection and design.展开更多
Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) con...Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) conducted a field trial to investigate the suitability of perpetual pavement concept for Kansas highway pavements. The experiment involved construction of four thick pavement structures. To verify the approach of designing perpetual pavements on the basis of an endurance strain limit, the pavements were instrumented with gauges for measuring tensile strains at the bottom of asphalt base layers at various speeds. Pavements were also instrumented with pressure cells to measure stress on the top of subgrade. Pavement response measurements under known vehicle load were performed in August 2006. FWD (Falling-weight deflectometer) was also used to collect deflection data at 15 m intervals on the same date. FWD first-sensor (center) deflections were normalized and corrected to 20 ℃ temperature based on measured mid-depth pavement temperature. The result shows that strain and stress measurements show significant amount of variations. Measurements in the thickest section are the most consistent. The higher the traffic speed, the lower the strains and stresses. The difference between strains and stresses at 30 kmhar and 65 km/hr is higher than the difference between 65 km/hr and 95 kin/hr. This shows the effect of speed on stresses and strains decreases as the speed increases. Softer binder in the asphalt base layer results in lower strains, which confirms that softer binder results in higher fatigue life.展开更多
Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted w...Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.展开更多
Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294...Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.展开更多
Physico-chemical composition of sweet orange (Citrus sinensis L.) cv. blood red was determined in relation to different storage conditions and micronutrients application at department of horticulture, Agricultural U...Physico-chemical composition of sweet orange (Citrus sinensis L.) cv. blood red was determined in relation to different storage conditions and micronutrients application at department of horticulture, Agricultural University Peshawar, Pakistan during 2006-2007 and 2007-2008. The post-harvest quality of sweet orange was evaluated for 60 days storage with 20 days intervals. Fruit were harvested after the foliar application of zinc and boron in two consecutive seasons. The harvested fruits were stored at an ambient temperature (ATS) of 25 + 2 ℃ and at low temperature storage (LTS) of 15 ± 2 ℃ with 60%-70% relative humidity (RH) for 60 days. Sweet oranges stored at LTS maintained better fruit quality than ATS. The foliar application of zinc and boron significantly enhanced fruit juice content, total soluble solids (TSS), ascorbic acid (AA) and non-reducing sugar (NRS) of fruit. However, fruit juice content, TSS and AA were observed significantly higher, when the fruit was treated with high zinc (1%) and low boron (0.02%). The percent of weight loss, disease incidence, TSS and reducing sugar (RS) increased with increasing the storage durations. A reduction was noted in fruit juice, AA and NRS with increasing the storage durations.展开更多
As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case ...As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.展开更多
基金Supported by the National Key Technology R&D Program(2012BAD14B15)the Fund for Scientific and Technological Innovation Team Construction of the Fujian Academy of Agricultural Sciences(STIF-Y01)the Inovation Fund for Youth Talent of Fujian Academy of Agricultural Sciences(2010QA-1)~~
文摘[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carbon circulation model for orchard eco-system. [Method] The effects of nitrogen treatments on soil organic carbon mineralization of citrus orchard soil were investigated under 10, 20, 30 ℃ by laboratory simulated experiment. [Result] The mineralization rate decreased quickly at the be- ginning of the experiment but remained stable at the late period under three temper- ature treatments. The amounts of CO2 ranged from 1 328.25-2 219.42 mg/kg under three temperature condition, and the amount of soil organic carbon mineralization of 100 mg/kg (N4) treatment was the greatest, while that of CK was the lowest. High level nitrogen treatment (N4 and N3) were significant higher than the lower level nitro- gen treatment (N2 and N1). The soil organic carbon mineralization rate increased with the temperature from 10 to 30℃. The dependence of soil carbon mineralization to temperature (Q10) was different under different nitrogen treatments that the Qlo value of N2 treatment was the lowest while that of the N4 treatment was the greatest. The soil organic carbon mineralization in Citrus orange orchard soil was affected significantly by high level nitrogen treatment, but with no significance under lower nitrogen treatment. [Conclusion] The dependence of soil carbon mineralization to temperature (Q10) increased with the increasing nitrogen input. The combination of nitrogen with temperature may increase the CO2 emission from Citrus orchard soil.
基金Supported by National Natural Science Foundation of China(41401559)Project of Hubei Provincial Science and Technology Department(2014CFB558)Project of Hubei Provincial Department of Education(D20141001)~~
文摘In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, alkaline salt content, optimal irrigation, gypsum conversion, gypsum and soil treatment and improvement depth. The ions on the obtained filtrate were analyzed in terms of salts. The improving ef- ficiency of gypsum for meadow alkali soil was analyzed through comparing the con- tents of soluble salts in pre-improvement and post-improvement soil by reasoning and calculation. The results showed that, (1) the dissolved amount and conversion amount of gypsum were increased, and the soil alkalinity was decreased corre- spondingly with the increased irrigation amount. However, after reaching a certain extent, the linear relationships became unobvious gradually. Therefore, the irrigation amount should be arranged reasonably for different treatment. (2) Compared with those at low temperature, the dissolved amount of gypsum at high temperature was increased by 1.47-1.50 times, the release amount of exchangeable sodium was in- creased by 2.98-4.70 times, and the release amount of exchangeable magnesium was increased by 2.07-2.90 times. In overall, the improving efficiency of gypsum in summer was better. However, gypsum had two shortcomings in summer. First, a large amount of gypsum leaked away. Second, a large amount of exchangeable magnesium, along with exchangeable sodium, was substituted by gypsum. (3) Compared with the other two treatments, treatment B (mixing gypsum and top 20- cm soil) showed the best improving efficiency, and it was characterized by stepwise dealkalization from top to down. In addition, mixing gypsum and topsoil is more practical in the production.
基金Supported by the Agricultural Science and Technology Innovation Funds of Jiangsu(cx(12)1001-04)~~
文摘Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were designed, including natural ventilation through transoms, forced ventilation via fans, and cooling by hyperbaric spray system. Specifically, the latter intermittent auto-pressurized spray system developed in our lab, which could spray successively via pressure from storage tubes without wetting the fermentation bed, is suitable for the promotion with the deep-litter technology in rural regions , since the power consumption is only 1 kwh per day.
基金Supported by National Natural Science Foundation of China(31300449)Science and Technology Support Program of Xinjiang Uyghur Autonomous Region(201433101)+1 种基金Doctoral Fund in the West of China of the Chinese Academy of Sciences(XBBS201205)Major Science and Technology Program of Xinjiang Uyghur Autonomous Region(201130106-3)
文摘Lop Nur potash mine greening projects is located in the heart of the Lop Nur, known as the "green zone ban". The project overcomes the extreme drought, high temperature, gale and dust salt and salt, and many other adverse environmen- tal factors. Adopted the suitable salt improvement measures and management tech- nology, the artificial green has emerged in the sea of death. At the same time the greening project improved the office environment of mining area, and shaped ex- treme environment greening projects successful cases.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(12)1001-04]~~
文摘The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.
文摘According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.
基金Supported by the National Natural Science Foundation of China(No.50909078)the National Basic Research Program of China("973"Program,No.2013CB035900)
文摘It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.
文摘Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark self-energy Σ_f and tie structure of non-local quark vacuumcondensate 【 0 | : q(x)q(0) : | 0 】 are investigated. The algebraic form of the quark propagatorproposed in this work describes a confining quark propagation, and is quite convenient to be used inany numerical calculations.
基金Supported by the Special Foundation Program of President(14007)the Science and Technology Support Program of Tianjin(14ZCZDNC00005)+3 种基金the Modern Agricultural Industry System for Vegetables of Tianjin(ITTVRS2017018)the Commercialization and Promotion of Agricultural Research Findings of Tianjin(201601220)China Spark Program(2015GA610013)the Special Foundation of President(16005)~~
文摘In this study, the green energy saving of greenhouse sensor node is de- signed to reduce the system power consumption and high efficiency. The green renewable solar energy resources are used as the energy source of nodes; the lowenergy consumed and cost effective MSP430 chip is used as the main control chip of the processor unit; the transmission frequency of the wireless transmission unit is 433 MHz, which has the characteristics of low power consumption, high signal strength, long transmission distance and small signal attenuation during the transmission; the power supply system unit is composed of monocrystalline silicon solar panel and high performance rechargeable lithium ion battery. The selection basis of each unit is clarified in detail, and optimization is performed by hardware circuit and software program to further reduce power consumption. The power consumption of the node is calculated by the experiment, and the charging conditions of the solar panel used in the node is tested. The results show that the system can achieve the setting target through the selection and design.
文摘Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) conducted a field trial to investigate the suitability of perpetual pavement concept for Kansas highway pavements. The experiment involved construction of four thick pavement structures. To verify the approach of designing perpetual pavements on the basis of an endurance strain limit, the pavements were instrumented with gauges for measuring tensile strains at the bottom of asphalt base layers at various speeds. Pavements were also instrumented with pressure cells to measure stress on the top of subgrade. Pavement response measurements under known vehicle load were performed in August 2006. FWD (Falling-weight deflectometer) was also used to collect deflection data at 15 m intervals on the same date. FWD first-sensor (center) deflections were normalized and corrected to 20 ℃ temperature based on measured mid-depth pavement temperature. The result shows that strain and stress measurements show significant amount of variations. Measurements in the thickest section are the most consistent. The higher the traffic speed, the lower the strains and stresses. The difference between strains and stresses at 30 kmhar and 65 km/hr is higher than the difference between 65 km/hr and 95 kin/hr. This shows the effect of speed on stresses and strains decreases as the speed increases. Softer binder in the asphalt base layer results in lower strains, which confirms that softer binder results in higher fatigue life.
基金Project(2019QZKK0905)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,ChinaProject(41901074)supported by the National Natural Science Foundation of China+2 种基金Project(2020A1515010745)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(SKLFSE201810)supported by the Open Fund of the State Key Laboratory of Frozen Soil Engineering,ChinaProject(2019MS119)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.
文摘Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.
文摘Physico-chemical composition of sweet orange (Citrus sinensis L.) cv. blood red was determined in relation to different storage conditions and micronutrients application at department of horticulture, Agricultural University Peshawar, Pakistan during 2006-2007 and 2007-2008. The post-harvest quality of sweet orange was evaluated for 60 days storage with 20 days intervals. Fruit were harvested after the foliar application of zinc and boron in two consecutive seasons. The harvested fruits were stored at an ambient temperature (ATS) of 25 + 2 ℃ and at low temperature storage (LTS) of 15 ± 2 ℃ with 60%-70% relative humidity (RH) for 60 days. Sweet oranges stored at LTS maintained better fruit quality than ATS. The foliar application of zinc and boron significantly enhanced fruit juice content, total soluble solids (TSS), ascorbic acid (AA) and non-reducing sugar (NRS) of fruit. However, fruit juice content, TSS and AA were observed significantly higher, when the fruit was treated with high zinc (1%) and low boron (0.02%). The percent of weight loss, disease incidence, TSS and reducing sugar (RS) increased with increasing the storage durations. A reduction was noted in fruit juice, AA and NRS with increasing the storage durations.
基金funded by National Natural Science Foundation of China(51178055)Asia Pacific Network for Global Change Research(1094801)
文摘As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.