提出双旁路耦合电弧熔化极惰性气体保护(Dual bypass metal inert-gas,DB-MIG)电弧焊方法并建立试验系统。该方法以传统熔化极惰性气体保护焊接电弧为主弧,引入两路对称的电流可控的非熔化极旁路电弧并与主弧形成耦合电弧进行焊接。由...提出双旁路耦合电弧熔化极惰性气体保护(Dual bypass metal inert-gas,DB-MIG)电弧焊方法并建立试验系统。该方法以传统熔化极惰性气体保护焊接电弧为主弧,引入两路对称的电流可控的非熔化极旁路电弧并与主弧形成耦合电弧进行焊接。由于旁路电弧的分流作用,在保持较高焊丝熔化电流的同时可有效降低母材输入电流,并且旁路电弧力的作用对熔滴过渡也有显著的影响。设计专用的窄带滤光系统,实现无激光背光的焊接熔滴过渡行为的高速摄像,获得不同旁路电流参数条件下的铝合金DB-MIG焊熔滴过渡的高速摄影图像并进行分析。试验结果表明总电流恒定的情况下,熔滴过渡形态随旁路电弧电流参数改变而改变。对DB-MIG焊条件下作用于熔滴上的电弧力的分布进行理论分析,解释试验现象,理论分析和研究表明双旁路耦合电弧可以促进熔滴过渡并可显著降低喷射过渡的临界电流。展开更多
实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化...实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化控制系统和工艺参数的基础上采用脉冲旁路耦合电弧焊方法将铝镁合金ER5356堆焊到304不锈钢板上,获得结合良好的焊缝。对焊接接头进行扫描电镜(Scanning electron microscope,SEM)、能量色散光谱仪(Energy dispersive spectrometry,EDS)分析,结果表明:铝与不锈钢焊接接头中间层金属间化合物平均厚度约为8μm,小于10μm的临界厚度;脉冲旁路耦合电弧焊方法能够实现铝钢的连接,是一种新型低成本低热输入电弧焊方法。展开更多
在介绍了双丝旁路耦合电弧熔化极气体保护焊(双丝旁路耦合电弧(Double-electrode gas metal arc welding,DE-GMAW))高效焊接工艺原理的基础之上,采用双闭环反馈解耦智能控制系统,进行双丝旁路耦合电弧GMAW高速焊接工艺试验,测量双丝旁...在介绍了双丝旁路耦合电弧熔化极气体保护焊(双丝旁路耦合电弧(Double-electrode gas metal arc welding,DE-GMAW))高效焊接工艺原理的基础之上,采用双闭环反馈解耦智能控制系统,进行双丝旁路耦合电弧GMAW高速焊接工艺试验,测量双丝旁路耦合电弧GMAW母材热输入,分析双丝旁路耦合电弧GMAW高效焊接工艺机理,并对双丝旁路耦合电弧GMAW高效焊接工艺方法进行改进,进一步研究混合气体保护下的双丝旁路耦合电弧GMAW及其熔滴过渡行为,且开发出单电源双丝旁路耦合电弧GMAW。研究表明:采用双闭环反馈解耦智能控制系统使双丝旁路耦合电弧GMAW焊接过程稳定性更好、精确度更高且响应速度更快;旁路分流是实现高效焊接的同时降低母材热输入的关键;采用混合气体保护下的双丝旁路耦合电弧GMAW能进一步提高焊接过程稳定性,单电源双丝旁路耦合电弧GMAW能形成良好的焊缝成形,且设备成本低。展开更多
文摘提出双旁路耦合电弧熔化极惰性气体保护(Dual bypass metal inert-gas,DB-MIG)电弧焊方法并建立试验系统。该方法以传统熔化极惰性气体保护焊接电弧为主弧,引入两路对称的电流可控的非熔化极旁路电弧并与主弧形成耦合电弧进行焊接。由于旁路电弧的分流作用,在保持较高焊丝熔化电流的同时可有效降低母材输入电流,并且旁路电弧力的作用对熔滴过渡也有显著的影响。设计专用的窄带滤光系统,实现无激光背光的焊接熔滴过渡行为的高速摄像,获得不同旁路电流参数条件下的铝合金DB-MIG焊熔滴过渡的高速摄影图像并进行分析。试验结果表明总电流恒定的情况下,熔滴过渡形态随旁路电弧电流参数改变而改变。对DB-MIG焊条件下作用于熔滴上的电弧力的分布进行理论分析,解释试验现象,理论分析和研究表明双旁路耦合电弧可以促进熔滴过渡并可显著降低喷射过渡的临界电流。
文摘实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化控制系统和工艺参数的基础上采用脉冲旁路耦合电弧焊方法将铝镁合金ER5356堆焊到304不锈钢板上,获得结合良好的焊缝。对焊接接头进行扫描电镜(Scanning electron microscope,SEM)、能量色散光谱仪(Energy dispersive spectrometry,EDS)分析,结果表明:铝与不锈钢焊接接头中间层金属间化合物平均厚度约为8μm,小于10μm的临界厚度;脉冲旁路耦合电弧焊方法能够实现铝钢的连接,是一种新型低成本低热输入电弧焊方法。
文摘在介绍了双丝旁路耦合电弧熔化极气体保护焊(双丝旁路耦合电弧(Double-electrode gas metal arc welding,DE-GMAW))高效焊接工艺原理的基础之上,采用双闭环反馈解耦智能控制系统,进行双丝旁路耦合电弧GMAW高速焊接工艺试验,测量双丝旁路耦合电弧GMAW母材热输入,分析双丝旁路耦合电弧GMAW高效焊接工艺机理,并对双丝旁路耦合电弧GMAW高效焊接工艺方法进行改进,进一步研究混合气体保护下的双丝旁路耦合电弧GMAW及其熔滴过渡行为,且开发出单电源双丝旁路耦合电弧GMAW。研究表明:采用双闭环反馈解耦智能控制系统使双丝旁路耦合电弧GMAW焊接过程稳定性更好、精确度更高且响应速度更快;旁路分流是实现高效焊接的同时降低母材热输入的关键;采用混合气体保护下的双丝旁路耦合电弧GMAW能进一步提高焊接过程稳定性,单电源双丝旁路耦合电弧GMAW能形成良好的焊缝成形,且设备成本低。