Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and ind...Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.展开更多
This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Ru...A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation will the mixing performance near the free surface be improved.In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.展开更多
基金financial support received from Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT)
文摘Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.
基金Supported by the Fundamental Research Funds for the Central Universities(2012QNA4018)the National Natural Science foundation of China(21206144)the Program for Zhejiang Leading Team of S&T Innovation(2011R50005)
文摘A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation will the mixing performance near the free surface be improved.In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.