A 3D FEM model for symmetric thin-wall tube neck-spinning is established. The spinning process is simulated by means of ANSYS software, and the dynamic boundary and contact problems in simulation are solved. The trans...A 3D FEM model for symmetric thin-wall tube neck-spinning is established. The spinning process is simulated by means of ANSYS software, and the dynamic boundary and contact problems in simulation are solved. The transient stress distribution of contact area, the transient strain distribution of nodes in typical section and the strain distribution of the whole part at last are attained, and the place and the cause of crack are analyzed. Simulation results show how the strain distribution of typical section, the thickness of some typical nodes, the Z coordinate in typical section and the spinning force of three rollers change with the time. According to study the variation curve, the material flow law along radial, tangential and axial direction is attained and the whole spinning process is studied. The experiment data reflect how the spinning force is influenced by different process parameters, such as feed rate, roundness radius and pass reduction. The simulation and the experiment results supply criteria for optimum design and reasonable parameter selection.展开更多
Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulat...Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.展开更多
文摘A 3D FEM model for symmetric thin-wall tube neck-spinning is established. The spinning process is simulated by means of ANSYS software, and the dynamic boundary and contact problems in simulation are solved. The transient stress distribution of contact area, the transient strain distribution of nodes in typical section and the strain distribution of the whole part at last are attained, and the place and the cause of crack are analyzed. Simulation results show how the strain distribution of typical section, the thickness of some typical nodes, the Z coordinate in typical section and the spinning force of three rollers change with the time. According to study the variation curve, the material flow law along radial, tangential and axial direction is attained and the whole spinning process is studied. The experiment data reflect how the spinning force is influenced by different process parameters, such as feed rate, roundness radius and pass reduction. The simulation and the experiment results supply criteria for optimum design and reasonable parameter selection.
文摘Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.