Propeller blade width measurement has been extensively studied in the past using direct and indirect methods, and it plays a great role in determining the quality of the finished products. It has surveyed that previou...Propeller blade width measurement has been extensively studied in the past using direct and indirect methods, and it plays a great role in determining the quality of the finished products. It has surveyed that previous techniques are usually time-consuming and erroneous due to a large number of points to be processed in blade width measurement. This paper proposes a new method of measuring blade width using two images acquired from different viewpoints of the same blade. And a new feature points matching approach for propeller blade image is proposed in stereo vision measurement. Based on these, pixel coordinates of contour points of the blade in two images are extracted and converted to real world coordinates by image algorithm and binocular stereo machine vision theory. Then, from the real world coordinates, the blade width at any position can be determined by simple geometrical method.展开更多
Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuatio...Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuation model and warhead condition kill probability model of rotor blades are established by Monte Carlo method and kinetics theory with new ideas. Based on limited data, armor thickness of gunship is estimated, and a complete multi-purpose guided missile kill probability mathematical model is established, which provides necessary mathematical tool for the accurate and objective analysis of multi-purpose guided missile kill probability against gunship. Based on the establishment of the model, sensitivity analysis and optimal design of the main factors of multi-purpose guided missile kill probability are conducted, and the results show that the single multi-purpose guided missile lethality performance can be improved significantly by sensitivity analysis and optimization.展开更多
Pressure-sensitive paint(PSP)is a global pressure measurement technique.Compared with pressure transducers,PSP has significant advantages such as high spatial resolution and a lack of contact when applied to fast-rota...Pressure-sensitive paint(PSP)is a global pressure measurement technique.Compared with pressure transducers,PSP has significant advantages such as high spatial resolution and a lack of contact when applied to fast-rotating blades.However,due to the limitations of other pressure measurement techniques,the validation of PSP measurements on fast-rotating blades is generally difficult.In this work,a comprehensive study including PSP measurement,force balance measurement,and simulation was conducted on a 1 m-diameter propeller at the China Aerodynamic Research and Development Center.First,our computational fluid dynamics(CFD)code was validated by comparing the calculated aerodynamic thrust with the results from force balance measurements.Then,the pressure distributions on the propeller blade obtained by PSP were carefully compared with the CFD results under different working conditions.The results of PSP measurements,force balance measurements,and CFD showed good agreement,and the PSP measurement errors were estimated to be less than 5% of the dynamic pressure at the blade tip.Finally,the variations in pressure distribution under different rotating speeds and free-stream velocities were discussed.展开更多
In order to clarify the unsteady flow fields at low flow-rate region with positive gradient on pressure-flow-rate curve,the experimental investigation was carried out at rotor inlet and outside of rotor blade tip with...In order to clarify the unsteady flow fields at low flow-rate region with positive gradient on pressure-flow-rate curve,the experimental investigation was carried out at rotor inlet and outside of rotor blade tip without casing in a semi-opened propeller fan using a hot-wire anemometer.A single I-type hot-wire probe was used,and the data obtained were processed by the use of phase-locked averaging,ensemble averaging and FFT analyzing.The flow fields at rotor inlet and outside of rotor blade tip were discussed mainly using the results from distributions of velocity fluctuations and power spectrum density.It was found from these results that there are the two types of different periodical fluctuations and both of those frequencies were not the same of rotor rotating frequency(RRF;15Hz).One was observed at relatively high flow-rate region at relatively downstream area in measurement and its frequency was approximately 7Hz(47% of RRF).The other was observed at relatively low flow-rate region at relatively upstream area in measurement and its frequency was approximately 10Hz(67% of RRF)".As the velocity fluctuations with the flow fields are rapidly increased by the former fluctuation,it is thought that its fluctuation is the trigger of blade stall.展开更多
The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter roto...The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor(without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA(Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test(TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.展开更多
基金Supported by the Natural Science Foundation of China (50975133)the Innovative Foundation for Ph.D of the Jiangsu Province, China (2010-227)
文摘Propeller blade width measurement has been extensively studied in the past using direct and indirect methods, and it plays a great role in determining the quality of the finished products. It has surveyed that previous techniques are usually time-consuming and erroneous due to a large number of points to be processed in blade width measurement. This paper proposes a new method of measuring blade width using two images acquired from different viewpoints of the same blade. And a new feature points matching approach for propeller blade image is proposed in stereo vision measurement. Based on these, pixel coordinates of contour points of the blade in two images are extracted and converted to real world coordinates by image algorithm and binocular stereo machine vision theory. Then, from the real world coordinates, the blade width at any position can be determined by simple geometrical method.
文摘Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuation model and warhead condition kill probability model of rotor blades are established by Monte Carlo method and kinetics theory with new ideas. Based on limited data, armor thickness of gunship is estimated, and a complete multi-purpose guided missile kill probability mathematical model is established, which provides necessary mathematical tool for the accurate and objective analysis of multi-purpose guided missile kill probability against gunship. Based on the establishment of the model, sensitivity analysis and optimal design of the main factors of multi-purpose guided missile kill probability are conducted, and the results show that the single multi-purpose guided missile lethality performance can be improved significantly by sensitivity analysis and optimization.
基金supported by the Foundation of the State Key Laboratory of Aerodynamics(Grant No.SKLA2019040302)the National Natural Science Foundation of China(Grant No.11872038).
文摘Pressure-sensitive paint(PSP)is a global pressure measurement technique.Compared with pressure transducers,PSP has significant advantages such as high spatial resolution and a lack of contact when applied to fast-rotating blades.However,due to the limitations of other pressure measurement techniques,the validation of PSP measurements on fast-rotating blades is generally difficult.In this work,a comprehensive study including PSP measurement,force balance measurement,and simulation was conducted on a 1 m-diameter propeller at the China Aerodynamic Research and Development Center.First,our computational fluid dynamics(CFD)code was validated by comparing the calculated aerodynamic thrust with the results from force balance measurements.Then,the pressure distributions on the propeller blade obtained by PSP were carefully compared with the CFD results under different working conditions.The results of PSP measurements,force balance measurements,and CFD showed good agreement,and the PSP measurement errors were estimated to be less than 5% of the dynamic pressure at the blade tip.Finally,the variations in pressure distribution under different rotating speeds and free-stream velocities were discussed.
文摘In order to clarify the unsteady flow fields at low flow-rate region with positive gradient on pressure-flow-rate curve,the experimental investigation was carried out at rotor inlet and outside of rotor blade tip without casing in a semi-opened propeller fan using a hot-wire anemometer.A single I-type hot-wire probe was used,and the data obtained were processed by the use of phase-locked averaging,ensemble averaging and FFT analyzing.The flow fields at rotor inlet and outside of rotor blade tip were discussed mainly using the results from distributions of velocity fluctuations and power spectrum density.It was found from these results that there are the two types of different periodical fluctuations and both of those frequencies were not the same of rotor rotating frequency(RRF;15Hz).One was observed at relatively high flow-rate region at relatively downstream area in measurement and its frequency was approximately 7Hz(47% of RRF).The other was observed at relatively low flow-rate region at relatively upstream area in measurement and its frequency was approximately 10Hz(67% of RRF)".As the velocity fluctuations with the flow fields are rapidly increased by the former fluctuation,it is thought that its fluctuation is the trigger of blade stall.
基金supported by the 7th Framework Programme project IMESCON(PITN-GA-2010-264672)and in part by PL-Grid Infrastructure
文摘The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor(without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA(Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test(TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.