目的筛选膝关节压缩感知(CS)三维体素各向同性快速自旋回波采集(VISTA)中等权重序列成像的最优加速系数。方法对9名健康志愿者行左膝CS 3D VISTA中等权重序列成像,分别设定CS加速系数为4、6、8、10、12,比较各组图像膝关节各组织信噪比(...目的筛选膝关节压缩感知(CS)三维体素各向同性快速自旋回波采集(VISTA)中等权重序列成像的最优加速系数。方法对9名健康志愿者行左膝CS 3D VISTA中等权重序列成像,分别设定CS加速系数为4、6、8、10、12,比较各组图像膝关节各组织信噪比(SNR)、对比噪声比(CNR)和不同区域解剖结构评分。结果不同CS加速系数CS 3D VISTA图像中,软骨、关节液、肌肉和骨髓SNR差异均有统计学意义(P均<0.05),半月板和韧带SNR差异无统计学意义(P均>0.05);关节液-软骨、关节液-半月板、关节液-韧带和软骨-软骨下骨间CNR差异均有统计学意义(P均<0.05);股胫关节、股骨远端骨髓和膝后部肌肉解剖结构评分差异均有统计学意义(P均<0.001),髌股关节解剖结构评分差异无统计学意义(P>0.05)。CS加速系数为10时,膝关节各部位SNR值及各组织间CNR值均最高;CS加速系数为8及以上时,各部位图像解剖结构评分逐渐降低。结论CS 3D VISTA中等权重序列膝关节成像中,设定CS加速系数为8,可在成像时间、SNR、CNR及图像细节显示等方面达到较好平衡。展开更多
In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is belie...In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.展开更多
In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is desc...In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described. Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms. Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.展开更多
We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and presen...We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and present a theoreticalstudy of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as wellas the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cellsthat abound in the literature. From the theoretical analysis, we find that the cellshape, coating as well as materialparameters can change the ER spectrum. We demonstrate a good agreement between our theoretical predictions andexperimental data on human erthrocytes suspensions.展开更多
In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due t...In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.展开更多
The electron-cyclotron maser (ECM) emission driven by nonthermal electrons is one of the most crucial mechanisms responsible for radio emissions in magnetized planets, for the interplanetary medium (IPM) and for t...The electron-cyclotron maser (ECM) emission driven by nonthermal electrons is one of the most crucial mechanisms responsible for radio emissions in magnetized planets, for the interplanetary medium (IPM) and for the laboratory microwave generation devices. Major astrophysical observations demonstrate that nonthermal electrons frequently have a negative power-law spectrum with a lower energy cutoff and anisotropic distribution in the velocity space. In this paper, the effects of power-law spectrum behaviors of electrons on a ring-beam maser emission are considered. The results show that the growth rates of O1 and X2 modes decrease rapidly for small A (the dispersion of momentum u). Because of the lower energy cutoff behavior, the nonthermal electrons with large a still can excite the ECM instability efficiently. The present analysis also includes the effects of parameter β (βu0 is the dispersion of perpendicular momentum ui, u0 the average value of u) on the instability. The growth rate of X2 mode decreases with parameter v0 (v0 = u⊥o/uo, U⊥0 is the average value of u⊥). But for O1 mode, the relationship between the growth rate and v0 is complicated. It also shows that the growth rates are very sensitive to frequency ratio Ω (frequency ratio of electron cyclotron frequency to plasma frequency).展开更多
The nonadiabatic acceleration of plasma sheet ions is important to the understanding of substorm energetic injections and the formation of ring current. Previous studies show that nonadiabatic acceleration of protons ...The nonadiabatic acceleration of plasma sheet ions is important to the understanding of substorm energetic injections and the formation of ring current. Previous studies show that nonadiabatic acceleration of protons by magnetic field dipolarization is hard to occur at X>–10 RE because the time-scale of dipolarization(several minutes) is much larger than the gyroperiod of protons there(several seconds). In this paper, we present a case of nonadiabatic acceleration of plasma sheet ions observed by Cluster on October 30, 2006 at(XGSM, YGSM)=(-7.7, 4.7) RE. The nonadiabatic acceleration of ions is caused not by previously reported magnetospheric dipolarization but by the ultra low frequency(ULF) waves during magnetospheric dipolarization. The nonadiabatic acceleration of ions generates a new energy flux structure of ions, which is characterized by the usual energy flux increase of ions(28–80 ke V) and a concurrent energy flux decrease of ions in a lower energy range(10 e V–20 ke V). These new observations constitute a complete physical picture: The lower energy ions absorb the wave energy, and thus get accelerated to higher energy. We use a nonadiabatic model to interpret the ion energy flux variations. Both analytic and simulation results are in good agreement with the observations. This indicates that the nonadiabatic acceleration associated with ULF waves superposed on dipolarized magnetic field is an effective mechanism for ion energization in the near-Earth plasma sheet. The presented energy flux structures can be used as a proxy to identify the similar dynamic process.展开更多
文摘目的筛选膝关节压缩感知(CS)三维体素各向同性快速自旋回波采集(VISTA)中等权重序列成像的最优加速系数。方法对9名健康志愿者行左膝CS 3D VISTA中等权重序列成像,分别设定CS加速系数为4、6、8、10、12,比较各组图像膝关节各组织信噪比(SNR)、对比噪声比(CNR)和不同区域解剖结构评分。结果不同CS加速系数CS 3D VISTA图像中,软骨、关节液、肌肉和骨髓SNR差异均有统计学意义(P均<0.05),半月板和韧带SNR差异无统计学意义(P均>0.05);关节液-软骨、关节液-半月板、关节液-韧带和软骨-软骨下骨间CNR差异均有统计学意义(P均<0.05);股胫关节、股骨远端骨髓和膝后部肌肉解剖结构评分差异均有统计学意义(P均<0.001),髌股关节解剖结构评分差异无统计学意义(P>0.05)。CS加速系数为10时,膝关节各部位SNR值及各组织间CNR值均最高;CS加速系数为8及以上时,各部位图像解剖结构评分逐渐降低。结论CS 3D VISTA中等权重序列膝关节成像中,设定CS加速系数为8,可在成像时间、SNR、CNR及图像细节显示等方面达到较好平衡。
基金Projects(41506080,41702162)supported by the National Natural Science Foundation of ChinaProjects(DD20160152,DD20160147,GZH200800503)supported by China Geological Survey+1 种基金Projects(XQ-2005-01,2009GYXQ10)supported by China Ministry of Land and ResourcesProject(201602004)supported by the Postdoctoral Innovation Foundation of Shandong Province,China
文摘In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.
基金National Natural Science Foundation of China(No.90923027No.51175405)
文摘In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described. Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms. Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.
文摘We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and present a theoreticalstudy of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as wellas the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cellsthat abound in the literature. From the theoretical analysis, we find that the cellshape, coating as well as materialparameters can change the ER spectrum. We demonstrate a good agreement between our theoretical predictions andexperimental data on human erthrocytes suspensions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772026, 11072030)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20080070011)+1 种基金the Scientific Research Foundation of Ministry of Education of China for Returned Scholars (Grant No. 20080732040)the Program of Beijing Municipal Key Discipline Construction
文摘In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10973043 and 41074107)the Ministry of Science and Technology of China (Grant No. 2011CB811402)the Key Laboratory of Solar Activity at National Astronomical Observatories,CAS
文摘The electron-cyclotron maser (ECM) emission driven by nonthermal electrons is one of the most crucial mechanisms responsible for radio emissions in magnetized planets, for the interplanetary medium (IPM) and for the laboratory microwave generation devices. Major astrophysical observations demonstrate that nonthermal electrons frequently have a negative power-law spectrum with a lower energy cutoff and anisotropic distribution in the velocity space. In this paper, the effects of power-law spectrum behaviors of electrons on a ring-beam maser emission are considered. The results show that the growth rates of O1 and X2 modes decrease rapidly for small A (the dispersion of momentum u). Because of the lower energy cutoff behavior, the nonthermal electrons with large a still can excite the ECM instability efficiently. The present analysis also includes the effects of parameter β (βu0 is the dispersion of perpendicular momentum ui, u0 the average value of u) on the instability. The growth rate of X2 mode decreases with parameter v0 (v0 = u⊥o/uo, U⊥0 is the average value of u⊥). But for O1 mode, the relationship between the growth rate and v0 is complicated. It also shows that the growth rates are very sensitive to frequency ratio Ω (frequency ratio of electron cyclotron frequency to plasma frequency).
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M531344)the Fundamental Research Funds for the Central Universities(Grant No.56YAH12039)+1 种基金the National Natural Science Foundation of China(Grant No.41174141)the National Basic Research Program of China("973"Project)(Grant No.2011CB811404)
文摘The nonadiabatic acceleration of plasma sheet ions is important to the understanding of substorm energetic injections and the formation of ring current. Previous studies show that nonadiabatic acceleration of protons by magnetic field dipolarization is hard to occur at X>–10 RE because the time-scale of dipolarization(several minutes) is much larger than the gyroperiod of protons there(several seconds). In this paper, we present a case of nonadiabatic acceleration of plasma sheet ions observed by Cluster on October 30, 2006 at(XGSM, YGSM)=(-7.7, 4.7) RE. The nonadiabatic acceleration of ions is caused not by previously reported magnetospheric dipolarization but by the ultra low frequency(ULF) waves during magnetospheric dipolarization. The nonadiabatic acceleration of ions generates a new energy flux structure of ions, which is characterized by the usual energy flux increase of ions(28–80 ke V) and a concurrent energy flux decrease of ions in a lower energy range(10 e V–20 ke V). These new observations constitute a complete physical picture: The lower energy ions absorb the wave energy, and thus get accelerated to higher energy. We use a nonadiabatic model to interpret the ion energy flux variations. Both analytic and simulation results are in good agreement with the observations. This indicates that the nonadiabatic acceleration associated with ULF waves superposed on dipolarized magnetic field is an effective mechanism for ion energization in the near-Earth plasma sheet. The presented energy flux structures can be used as a proxy to identify the similar dynamic process.