A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor...A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields.展开更多
基金The National Basic Research Program of China(973Program) (NoG2000026303)the National Natural Science Foun-dation of China (No50176008)
文摘A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields.