This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace...This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.展开更多
WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a ...An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a series of measurements near blade tip, the velocity field near blade tip is documented, and through which, the tip vortex rollup and development are presented. The radial distribution of instantaneous velocities at various levels above and under the rotor disc is also measured in this investigation. Using this distribution, the influence of the tip vortex from the preceding blade on the follow up blade is discussed.展开更多
For studying ice accretion on aircraft and helicopter airfoils,a modified model of the mass and heat transfer on icing surface was first proposed based on the classical Messinger model.Then an approach for predicting ...For studying ice accretion on aircraft and helicopter airfoils,a modified model of the mass and heat transfer on icing surface was first proposed based on the classical Messinger model.Then an approach for predicting ice accretion on multi-element airfoils was set up through introducing the interpolation calculation of airflow field around the multi-element airfoils.Consid-ering the equivalent thermal power from anti-ice system,a method of the prediction of ice accretion under anti-ice situation was proposed.In order to study the prediction of ice accretion on helicopter rotor,a numerical simulation method combining the computational fluid dynamics (CFD) technique with helicopter aerodynamics theory was set up.The agreement between the results of numerical simulation and the experimental data indicates that the model and methods proposed in this paper are feasible and effective,and that they can lay the foundation of the research on the dynamics in icing condition and design of anti/de-ice system.展开更多
The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter roto...The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor(without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA(Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test(TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.展开更多
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first...The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.展开更多
文摘This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.
文摘An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a series of measurements near blade tip, the velocity field near blade tip is documented, and through which, the tip vortex rollup and development are presented. The radial distribution of instantaneous velocities at various levels above and under the rotor disc is also measured in this investigation. Using this distribution, the influence of the tip vortex from the preceding blade on the follow up blade is discussed.
基金supported by the Aeronautical Science Foundation of China (Grant No. 2009ZA51007)
文摘For studying ice accretion on aircraft and helicopter airfoils,a modified model of the mass and heat transfer on icing surface was first proposed based on the classical Messinger model.Then an approach for predicting ice accretion on multi-element airfoils was set up through introducing the interpolation calculation of airflow field around the multi-element airfoils.Consid-ering the equivalent thermal power from anti-ice system,a method of the prediction of ice accretion under anti-ice situation was proposed.In order to study the prediction of ice accretion on helicopter rotor,a numerical simulation method combining the computational fluid dynamics (CFD) technique with helicopter aerodynamics theory was set up.The agreement between the results of numerical simulation and the experimental data indicates that the model and methods proposed in this paper are feasible and effective,and that they can lay the foundation of the research on the dynamics in icing condition and design of anti/de-ice system.
基金supported by the 7th Framework Programme project IMESCON(PITN-GA-2010-264672)and in part by PL-Grid Infrastructure
文摘The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators(RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor(without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA(Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test(TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.
基金supported by China National Basic Research Program (973 Program),Project No.2007 CB 210107
文摘The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.