In this paper,NCEP reanalysis data,intensive observation data collected from field experiment,model simulation data,and topographic trial data are fully analyzed to study a severe heavy rainfall event during 5 6 June ...In this paper,NCEP reanalysis data,intensive observation data collected from field experiment,model simulation data,and topographic trial data are fully analyzed to study a severe heavy rainfall event during 5 6 June 2008 in South China.Unlike most warm region rainfall cases,this one is associated with an obvious vortex system,which draws in water vapor and energy from the southwest monsoon surges ahead of a low trough above the Bengal Bay (BLT,Bengal Low Trough).At the lower troposphere,three currents,especially the southwest current and the east current,converge into the southeast of the vortex.Thus,the distributions of strong vorticity,water vapor,and ascending motion cause frequently occurrence and growth of convection there.The possible reasons for this rainfall event are summarized as a conceptual model.展开更多
In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Ga...In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Gaussian(LG) modes in the optical field with the free-space propagation model in the radio field. The proposed free-space vortex channel model is derived from the electric field expression of the LG modes and the freespace channel transfer function of the freespace propagation model theoretically. Simulation results verify that the proposed model could reflect the vortex channel characteristics better than the currently used free-space propagation model.展开更多
A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges ...A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges or mode numbers. In physics, two or more radio waves with different mode numbers are orthogonal to their azimuth angles. With the development of radio communication technologies, some researchers have been exploring the OAM-based multi-mode multiplexing(multi-OAM-mode multiplexing) technologies in order to enhance the channel spectrum efficiency(SE) of a radio communication system by using the orthogonal properties of vortex radios. After reviewing the reported researches of OAM-based radio communication, we find that some breakthroughs have been made in the combination of OAM and traditional Multi-Input-Multi-Output(MIMO). However, the existing technology is not sufficient to support OAM-based MIMO system to achieve maximum the channel SE. To maximize the spectrum efficiency of OAM-based MIMO system, we present a reused multi-OAM-mode multiplexing vortex radio(RMMVR) MIMO system, which is based on fractal uniform cir-cular arrays(UCAs). The scheme described in this study can effectively combine multiOAM-mode multiplexing with MIMO spatial multiplexing. First, we present the generation of RMMVR MIMO signals. Second, under line-of-sight(LOS) propagation conditions, we derive the channels of the RMMVR MIMO system. Third, we separate the RMMVR MIMO signals using an orthogonal separation method based on full azimuth sampling. Finally, we introduce the method for calculating the channel capacity of the RMMVR MIMO system. Theoretical analysis shows that the scheme proposed in this study is feasible. Moreover, the simulation results show that spatial and mode diversity are obtained by exploiting fractal UCAs. However, to enhance the channel SE of RMMVR MIMO system, an interference cancellation method needs to be introduced for zero-mode vortex radios, and some methods of multi-OAM-mode beams convergence and mode power optimization strategy should be introduced in the future.展开更多
It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power ...It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.展开更多
Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models...Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.展开更多
A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the spec...A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular mo- mentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respec- tively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter y, and transfer matrix ele- ments A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in op- tical micromanipulation.展开更多
基金supported by the Tropical Western-Pacific Observation and Predictability (Grant No.GYHY200706020)the National Basic Research Program of China(Grant No. 2009CB 421401)the National Natural Science Foundation of China (Grant Nos. 41175038,40930951,and 40375008)
文摘In this paper,NCEP reanalysis data,intensive observation data collected from field experiment,model simulation data,and topographic trial data are fully analyzed to study a severe heavy rainfall event during 5 6 June 2008 in South China.Unlike most warm region rainfall cases,this one is associated with an obvious vortex system,which draws in water vapor and energy from the southwest monsoon surges ahead of a low trough above the Bengal Bay (BLT,Bengal Low Trough).At the lower troposphere,three currents,especially the southwest current and the east current,converge into the southeast of the vortex.Thus,the distributions of strong vorticity,water vapor,and ascending motion cause frequently occurrence and growth of convection there.The possible reasons for this rainfall event are summarized as a conceptual model.
基金supported in part by National Science Foundation for Distinguished Young Scholars of China with Grant number 61325004Major Program of National Natural Science Foundation of Hubei in China with Grant number 2016CFA009+2 种基金the Fundamental Research Funds for the Central Universities with Grant number 2015ZDTD012the National Natural Science Foundation of China under Grant No.61463035the Research Foundation of the Education Department of Jiangxi Province under Grant No.GJJ150198
文摘In this paper, a free-space vortex channel model of the radio vortex system is proposed to describe the propagation characteristics of vortex signals over the vortex channel. The key idea is to combine the Laguerre-Gaussian(LG) modes in the optical field with the free-space propagation model in the radio field. The proposed free-space vortex channel model is derived from the electric field expression of the LG modes and the freespace channel transfer function of the freespace propagation model theoretically. Simulation results verify that the proposed model could reflect the vortex channel characteristics better than the currently used free-space propagation model.
基金supported by the National Natural Science Foundation of China(No.61671347)
文摘A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges or mode numbers. In physics, two or more radio waves with different mode numbers are orthogonal to their azimuth angles. With the development of radio communication technologies, some researchers have been exploring the OAM-based multi-mode multiplexing(multi-OAM-mode multiplexing) technologies in order to enhance the channel spectrum efficiency(SE) of a radio communication system by using the orthogonal properties of vortex radios. After reviewing the reported researches of OAM-based radio communication, we find that some breakthroughs have been made in the combination of OAM and traditional Multi-Input-Multi-Output(MIMO). However, the existing technology is not sufficient to support OAM-based MIMO system to achieve maximum the channel SE. To maximize the spectrum efficiency of OAM-based MIMO system, we present a reused multi-OAM-mode multiplexing vortex radio(RMMVR) MIMO system, which is based on fractal uniform cir-cular arrays(UCAs). The scheme described in this study can effectively combine multiOAM-mode multiplexing with MIMO spatial multiplexing. First, we present the generation of RMMVR MIMO signals. Second, under line-of-sight(LOS) propagation conditions, we derive the channels of the RMMVR MIMO system. Third, we separate the RMMVR MIMO signals using an orthogonal separation method based on full azimuth sampling. Finally, we introduce the method for calculating the channel capacity of the RMMVR MIMO system. Theoretical analysis shows that the scheme proposed in this study is feasible. Moreover, the simulation results show that spatial and mode diversity are obtained by exploiting fractal UCAs. However, to enhance the channel SE of RMMVR MIMO system, an interference cancellation method needs to be introduced for zero-mode vortex radios, and some methods of multi-OAM-mode beams convergence and mode power optimization strategy should be introduced in the future.
文摘It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.
文摘Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.
基金the support by the National Natural Science Foundation of China (Grant Nos.10974179 and 61178016),the support by the National Natural Science Foundation of China (Grant No.10904102)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.200928)+2 种基金the Natural Science of Jiangsu Province (Grant No.BK2009114)the Huo Ying Dong Education Foundation of China (Grant No.121009)the Key Project of Chinese Ministry of Education (Grant No.210081)
文摘A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular mo- mentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respec- tively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter y, and transfer matrix ele- ments A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in op- tical micromanipulation.