提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子...提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子电流信号并以之检验ESPRIT性能。结果表明:即使对于短时信号,ESPRIT仍具备高频率分辨力,可以准确估计定子电流各个分量的频率;但对其幅值、初相角的估计欠缺准确性、稳定性。随后,采用PSA确定各个频率分量的幅值、初相角。对一台异步电动机完成了转子故障检测试验,结果表明:基于ESPRIT与PSA的异步电动机转子故障检测方法是切实可行的,并且因仅需短时信号即可达到高频率分辨力而适用于负荷波动情况。展开更多
多重信号分选(MUltiple SIgnal Classification,MUSIC)算法是波达方向(Direction-Of-Arrival,DOA)估计的最重要算法之一,但庞大的计算量使其工程实用性大打折扣。为降低MUSIC的计算量,该文基于子空间旋转(Subspace Rotation Technique,S...多重信号分选(MUltiple SIgnal Classification,MUSIC)算法是波达方向(Direction-Of-Arrival,DOA)估计的最重要算法之一,但庞大的计算量使其工程实用性大打折扣。为降低MUSIC的计算量,该文基于子空间旋转(Subspace Rotation Technique,SRT)变换思想提出了一种高效改进算法,即SRT-MUSIC算法。SRT-MUSIC利用秩亏特性对噪声子空间矩阵按行分块并以旋转变换得到降维噪声子空间,进而基于该降维噪声子空间与导向矢量的正交性构造空间谱估计信号DOA。理论分析表明:SRT-MUSIC能有效避免空间谱搜索中的冗余运算,从而成倍降低算法的计算量。对于大阵元、少信号情况,所提算法计算效率优势更为明显。仿真实验证明了SRT-MUSIC的有效性和高效性。展开更多
针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入...针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.展开更多
现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(E...现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)的低频宽带声源波达方向(Direction of Arrival,DOA)估计算法,该算法适用于三个矩形子阵呈三角形分布的分布式阵列。算法利用该分布式阵列具有的子阵内相邻阵元间距、相邻子阵间距两种尺度对应的空间平移不变性分别进行方向余弦估计,并利用基于阵型分布的解模糊策略实现高精度方位估计。仿真结果验证了算法的有效性,表明了基于该算法的分布式阵列DOA估计精度优于相同阵元数与阵元间距的单个均匀矩形阵,分析了估计精度与分布基线长度的关系,体现了算法的实际工程应用价值。展开更多
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signa...将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。展开更多
基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利...基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。展开更多
文摘提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子电流信号并以之检验ESPRIT性能。结果表明:即使对于短时信号,ESPRIT仍具备高频率分辨力,可以准确估计定子电流各个分量的频率;但对其幅值、初相角的估计欠缺准确性、稳定性。随后,采用PSA确定各个频率分量的幅值、初相角。对一台异步电动机完成了转子故障检测试验,结果表明:基于ESPRIT与PSA的异步电动机转子故障检测方法是切实可行的,并且因仅需短时信号即可达到高频率分辨力而适用于负荷波动情况。
文摘多重信号分选(MUltiple SIgnal Classification,MUSIC)算法是波达方向(Direction-Of-Arrival,DOA)估计的最重要算法之一,但庞大的计算量使其工程实用性大打折扣。为降低MUSIC的计算量,该文基于子空间旋转(Subspace Rotation Technique,SRT)变换思想提出了一种高效改进算法,即SRT-MUSIC算法。SRT-MUSIC利用秩亏特性对噪声子空间矩阵按行分块并以旋转变换得到降维噪声子空间,进而基于该降维噪声子空间与导向矢量的正交性构造空间谱估计信号DOA。理论分析表明:SRT-MUSIC能有效避免空间谱搜索中的冗余运算,从而成倍降低算法的计算量。对于大阵元、少信号情况,所提算法计算效率优势更为明显。仿真实验证明了SRT-MUSIC的有效性和高效性。
文摘针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.
文摘现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)的低频宽带声源波达方向(Direction of Arrival,DOA)估计算法,该算法适用于三个矩形子阵呈三角形分布的分布式阵列。算法利用该分布式阵列具有的子阵内相邻阵元间距、相邻子阵间距两种尺度对应的空间平移不变性分别进行方向余弦估计,并利用基于阵型分布的解模糊策略实现高精度方位估计。仿真结果验证了算法的有效性,表明了基于该算法的分布式阵列DOA估计精度优于相同阵元数与阵元间距的单个均匀矩形阵,分析了估计精度与分布基线长度的关系,体现了算法的实际工程应用价值。
文摘将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。
文摘基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。