In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective da...In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.展开更多
文摘In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.