In this paper,we discuss the unitary transformation induced by Z_6 rotations of noncommutative space onthe states |k,q,s〉,which plays a key role in construction for noncommutative solitons T^2/Z_6 by GHS method.As ar...In this paper,we discuss the unitary transformation induced by Z_6 rotations of noncommutative space onthe states |k,q,s〉,which plays a key role in construction for noncommutative solitons T^2/Z_6 by GHS method.As aresult,we prove a well-known 'Gauss Sum' formula in the number theory through a concise way.展开更多
A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quant...A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quantum factoring. In particular, the detailed process of implementing one^qubit Deutsch Jozsa algorithm and the factorization of N = 15 are given. The microcavity mode is only virtually excited in the whole interaction, so the effective decoherent has slight effect on the current scheme. These schemes would be an important step to fabricate a solid quantum computer.展开更多
According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can...According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.展开更多
Transformation optics provides great versatility for precisely manipulating electromagnetic waves. It has been extended to other fields including acoustics, thermotics, and electrics. Taking advantage of the transform...Transformation optics provides great versatility for precisely manipulating electromagnetic waves. It has been extended to other fields including acoustics, thermotics, and electrics. Taking advantage of the transformation electrics method, we demonstrate that the square-shaped cloak can guide electric current around the cloaked region smoothly without perturbing the exterior electric current. And the cylindrical rotator can rotate the electric current.Inside the enclosed domain of the rotator, the electric current from the outside will appear as if it is coming from a different angle. Finally, the related experimental realizations and potential applications are also discussed.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10575080
文摘In this paper,we discuss the unitary transformation induced by Z_6 rotations of noncommutative space onthe states |k,q,s〉,which plays a key role in construction for noncommutative solitons T^2/Z_6 by GHS method.As aresult,we prove a well-known 'Gauss Sum' formula in the number theory through a concise way.
基金Supported by National Natural Science Foundation of China (NSFC) under Grant Nos.60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357008+1 种基金Anhui Provincial Natural Science Foundation under Grant No.070412060the Program of the Education Department of Anhui Province under Grant Nos.KJ2008A28ZC,KJ2008B83ZC,KJ2008B265,and 2009A048Z
文摘A scheme for implementing discrete quantum Fourier transform is proposed via quantum dots embedded in a microcavity, and then some of its applications are investigated, i.e., Deutsch 3ozsa. algorithm and Shor's quantum factoring. In particular, the detailed process of implementing one^qubit Deutsch Jozsa algorithm and the factorization of N = 15 are given. The microcavity mode is only virtually excited in the whole interaction, so the effective decoherent has slight effect on the current scheme. These schemes would be an important step to fabricate a solid quantum computer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277018, 61175102, & 51475115)the Open Fund of the State Key Laboratory of Mechanical Transmissions (Grant No.SKLMT-KFKT-201509)
文摘According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.
基金Support by Young Teacher Training Program of Shanghai Municipal Education Commission under Grant No.egd11005by Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ177+3 种基金by National Natural Science Foundation of China under Grant No.11304195financial support by the National Natural Science Foundation of China under Grant Nos.11075035 and 11222544by Fok Ying Tung Education Foundation under Grant No.131008by Shanghai Rising-Star Program under Grant No.12QA1400200
文摘Transformation optics provides great versatility for precisely manipulating electromagnetic waves. It has been extended to other fields including acoustics, thermotics, and electrics. Taking advantage of the transformation electrics method, we demonstrate that the square-shaped cloak can guide electric current around the cloaked region smoothly without perturbing the exterior electric current. And the cylindrical rotator can rotate the electric current.Inside the enclosed domain of the rotator, the electric current from the outside will appear as if it is coming from a different angle. Finally, the related experimental realizations and potential applications are also discussed.