In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesi...In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesic sphere,i.e.,every principle curvature of the hypersurfaces converges to a same constant under the flow.展开更多
文摘In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesic sphere,i.e.,every principle curvature of the hypersurfaces converges to a same constant under the flow.