The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improv...The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.展开更多
Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that...Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that A, B, and C have increasing tendencies; the tilt of the rotation axis increases 2.1×10^ 8 mas/yr; the third component of the rotational angular velocity, ω3 , has a decrease of 1.0×10^ 22 rad/s^2, which is around 23% of the present observed value. Studies show in detail that both 0 and ω3 experience complex fluctuations at various time scales due to the variations of A, B and C.展开更多
Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (...Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia and the spin of the TSD bands in odd-A Lu isotopes are obtained. The calculation shows that the competition between the pairing and anti-pairing effects exists in these TSD bands. Meanwhile, the SU(3) symmetry in TSD bands are broken more seriously than in superdeformed (SD) bands.展开更多
An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotatin...An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.展开更多
Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) w...Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations are performed on these rotational bands. Both experimental kinematic and dynamic moments of inertia (f^(1) and ,f^(2) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia f(1) with the experimental ones extracted from different spin assignments, the spin 17/2- →13/2- is assigned to the lowest-lying 196.6(5) keV transition of the 1/2- [521 ] band, and 15/2→11/2- to the 189(1) keV transition of the 7/2- [514] band, respectively. The proton N = 7 major shell is included in the calculations. The intruder of the high-j low→lj15/2 (1/2-[770]) orbital at the high spin leads to band-crossings at hω = 0.20 (hω~=0.25) MeV for the 7/2-[514]ω= -1/2 (ω= +1/2) band, and at hω=0.175 MeV for the 1/2- [521 ] ω= - 1/2 band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.展开更多
文摘The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.
基金Founded by the National Natural Science Foundation of China (No.40637034, No.40574004), the National 863 Program of China (No. 2006AA12Z211) and the Fund of Key Lab of Geodynamic Geodesy of Chinese Academy (No. L06-02).
文摘Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that A, B, and C have increasing tendencies; the tilt of the rotation axis increases 2.1×10^ 8 mas/yr; the third component of the rotational angular velocity, ω3 , has a decrease of 1.0×10^ 22 rad/s^2, which is around 23% of the present observed value. Studies show in detail that both 0 and ω3 experience complex fluctuations at various time scales due to the variations of A, B and C.
基金Supported by the National Natural Science Foundation of China under Grant No.10475026the Natural Science Foundation of Zhejiang Province under Grant No.KY607518
文摘Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia and the spin of the TSD bands in odd-A Lu isotopes are obtained. The calculation shows that the competition between the pairing and anti-pairing effects exists in these TSD bands. Meanwhile, the SU(3) symmetry in TSD bands are broken more seriously than in superdeformed (SD) bands.
基金supported by the National Natural Science Foundation of China (No.40904018)the Key Laboratory Foundation of the Ministry of Education of China (No.201001)the Doctoral Innovation Foundation of Naval University of Engineering (No.BSJJ2011008)
文摘An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275098 and 11275067)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations are performed on these rotational bands. Both experimental kinematic and dynamic moments of inertia (f^(1) and ,f^(2) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia f(1) with the experimental ones extracted from different spin assignments, the spin 17/2- →13/2- is assigned to the lowest-lying 196.6(5) keV transition of the 1/2- [521 ] band, and 15/2→11/2- to the 189(1) keV transition of the 7/2- [514] band, respectively. The proton N = 7 major shell is included in the calculations. The intruder of the high-j low→lj15/2 (1/2-[770]) orbital at the high spin leads to band-crossings at hω = 0.20 (hω~=0.25) MeV for the 7/2-[514]ω= -1/2 (ω= +1/2) band, and at hω=0.175 MeV for the 1/2- [521 ] ω= - 1/2 band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.