为了准确计算电工钢片的旋转异常损耗,根据谐波分析原理对建立的电工钢叠片有限元模型进行时步有限元仿真;基于旋转铁心损耗计算模型,通过考虑涡流集肤效应对旋转损耗系数的影响结合钢片在中低频率下的损耗测试获得叠片损耗计算的关键系...为了准确计算电工钢片的旋转异常损耗,根据谐波分析原理对建立的电工钢叠片有限元模型进行时步有限元仿真;基于旋转铁心损耗计算模型,通过考虑涡流集肤效应对旋转损耗系数的影响结合钢片在中低频率下的损耗测试获得叠片损耗计算的关键系数,间接求得电工钢片中旋转异常损耗的计算式。利用构建的新型三维磁特性测试系统对典型电工钢叠片样品进行椭圆形旋转与交变励磁方式下的宽频铁耗实验测量,并定量地进行了对比与分析。结果表明:2种励磁方式下叠片损耗的变化规律相类似,但其椭圆形旋转各损耗都要比交变时的对应损耗大,必须认真考虑谐波、集肤效应和旋转励磁等对材料特性的影响;所计算出的旋转异常损耗也是相对较小,在1 k Hz时也未占到旋转总铁耗的5%。从而验证了所推导出的计算式和测量手段的正确性与可行性。展开更多
A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational flui...A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational fluid dynamics) tool is applied to study the flow impact velocity, solid concentration and particle size effects on the erosion rate of sample plates in the liquid-solid mixture in a cylindrical tank. The MRF (multiple reference frames) method is applied to model the rotating parts inside the tank. The flow behavior and liquid-solid interactions in the slurry tank test rig are simulated and the results are validated with the experimental data. It was approved that changing the height and diameter of each rotating zone (MRF zones) have a negligible effect on simulation results. It was observed that the erosion mass losses are increasing with increase in flow velocity and sand concentration. Both variations can be predicted with a logarithmic dependence of mass loss to rotational velocity and sand concentration. The increase in erosion rate by increase in particle size was also observed for three various particle size distributions.展开更多
文摘为了准确计算电工钢片的旋转异常损耗,根据谐波分析原理对建立的电工钢叠片有限元模型进行时步有限元仿真;基于旋转铁心损耗计算模型,通过考虑涡流集肤效应对旋转损耗系数的影响结合钢片在中低频率下的损耗测试获得叠片损耗计算的关键系数,间接求得电工钢片中旋转异常损耗的计算式。利用构建的新型三维磁特性测试系统对典型电工钢叠片样品进行椭圆形旋转与交变励磁方式下的宽频铁耗实验测量,并定量地进行了对比与分析。结果表明:2种励磁方式下叠片损耗的变化规律相类似,但其椭圆形旋转各损耗都要比交变时的对应损耗大,必须认真考虑谐波、集肤效应和旋转励磁等对材料特性的影响;所计算出的旋转异常损耗也是相对较小,在1 k Hz时也未占到旋转总铁耗的5%。从而验证了所推导出的计算式和测量手段的正确性与可行性。
文摘A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational fluid dynamics) tool is applied to study the flow impact velocity, solid concentration and particle size effects on the erosion rate of sample plates in the liquid-solid mixture in a cylindrical tank. The MRF (multiple reference frames) method is applied to model the rotating parts inside the tank. The flow behavior and liquid-solid interactions in the slurry tank test rig are simulated and the results are validated with the experimental data. It was approved that changing the height and diameter of each rotating zone (MRF zones) have a negligible effect on simulation results. It was observed that the erosion mass losses are increasing with increase in flow velocity and sand concentration. Both variations can be predicted with a logarithmic dependence of mass loss to rotational velocity and sand concentration. The increase in erosion rate by increase in particle size was also observed for three various particle size distributions.