针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。...针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。展开更多
为解决部分遮挡情况下车辆实时跟踪丢失的问题,提出一种基于特征点匹配的改进ORB(improved oriented FAST and rotated BRIEF)算法。在FAST检测角点后用拉普拉斯极值去除虚假角点,相比ORB算法提高了匹配的正确率和检测速度。改进的FAST...为解决部分遮挡情况下车辆实时跟踪丢失的问题,提出一种基于特征点匹配的改进ORB(improved oriented FAST and rotated BRIEF)算法。在FAST检测角点后用拉普拉斯极值去除虚假角点,相比ORB算法提高了匹配的正确率和检测速度。改进的FAST检测角点速度快,BRIEF(binary robust independent elementary features)描述子缩短建立描述符的时间,减少存储空间,提高特征点匹配的速度,满足实时跟踪的需要。实验结果表明,在有光照变化和噪声干扰的情况下,该算法能够快速准确地跟踪有部分遮挡的车辆。展开更多
提出一种基于图像梯度旋转直方图(RHG,rotation histogram of gradients)的快速计算旋转不变特征描述符算法。RHG描述符使用直方图旋转的方法获得旋转不变性,采用直方图加权合并的方法降低边界效应引起的描述符统计矢量的突变。RHG描述...提出一种基于图像梯度旋转直方图(RHG,rotation histogram of gradients)的快速计算旋转不变特征描述符算法。RHG描述符使用直方图旋转的方法获得旋转不变性,采用直方图加权合并的方法降低边界效应引起的描述符统计矢量的突变。RHG描述符将特征点主方向的计算与描述符的计算合并,提高了计算效率。RHG描述符在图像存在尺度改变、3维视角变化引起的变形、旋转变化、照度改变和噪声等因素的影响下,具有较强的鲁棒性。RHG描述符的性能与尺度不变特征变换(SIFT,scale invariant feature transform)描述符相近,但计算速度提高2倍以上。展开更多
The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderate...The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.展开更多
文摘针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。
文摘为解决部分遮挡情况下车辆实时跟踪丢失的问题,提出一种基于特征点匹配的改进ORB(improved oriented FAST and rotated BRIEF)算法。在FAST检测角点后用拉普拉斯极值去除虚假角点,相比ORB算法提高了匹配的正确率和检测速度。改进的FAST检测角点速度快,BRIEF(binary robust independent elementary features)描述子缩短建立描述符的时间,减少存储空间,提高特征点匹配的速度,满足实时跟踪的需要。实验结果表明,在有光照变化和噪声干扰的情况下,该算法能够快速准确地跟踪有部分遮挡的车辆。
文摘The ground and low-lying collective states of a rotating system of N=3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime.The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≤ L ≤ 4N to obtain the ground and low-lying eigenstates.Our numerical results show that breathing modes with N-body eigenenergy spacing of 2hω⊥,known to exist in strictly 2D system with zero-range(δ-function) interaction potential,may as well exist in quasi-2D system with finite-range Gaussian interaction potential.To gain an insight into the many-body states,the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates.In the rapidly rotating regime the ground state in angular momentum subspaces L=(q/2)N(N-1) with q=2,4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose–Laughlin like state.We further observe that the first breathing mode exhibits features similar to the Bose–Laughlin state in having eigenenergy,von Neumann entropy and internal structure independent of interaction for the three-boson system considered here.On the contrary,for eigenstates lying between the Bose–Laughlin like ground state and the first breathing mode,values of eigenenergy,von Neumann entropy and internal structure are found to vary with interaction.