Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
A rotating disc column (RDC) with inner diameter 68 mm and 28 compartments is used in this study. Parameters including Sauter mean diameter, hold-up and mass transfer coefficient are measured experimentally un-der dif...A rotating disc column (RDC) with inner diameter 68 mm and 28 compartments is used in this study. Parameters including Sauter mean diameter, hold-up and mass transfer coefficient are measured experimentally un-der different operating conditions. The correlations in literature for molecular diffusion and enhancement factor equation including eddy diffusion, circulation and oscillation of drops are evaluated. A new equation for the effec-tive diffusion coefficient as a function of Reynolds number is proposed. The calculated values of mass transfer co-efficient and column height from the previous equations and present equation are compared with the experimental data. The results from the present equation are in very good agreement with the experimental results, which may be used in designing RDC columns.展开更多
An objective of the present paper is to experimentally clarify the torsion effect on the flow in helical circular pipes. We have made six helical circular pipes having different pitches and common non-dimensional curv...An objective of the present paper is to experimentally clarify the torsion effect on the flow in helical circular pipes. We have made six helical circular pipes having different pitches and common non-dimensional curvature δ of about 0.1. The torsion parameter β0, which is defined by β0 = τ/(2δ)1/2 with non-dimensional torsion r, are taken to be 0.02, 0.45, 0.69, 1.01, 1.38 and 1.89 covering from small to very large pitch. The velocity distributions and the turbulence of the flow are measured using an X-type hot-wire anemometer in the range of the Reynolds number from 200 to 20000. The results obtained are summarized as follows: The mean secondary flow pattern in a cross section of the pipe changes from an ordinary twin-vortex type as is seen in a curved pipe without torsion (toroidal pipe) to a single vortex type after one of the twin-vortex gradually disappears as β0 increases. The circulation direction of the single vortex is the same as the direction of torsion of the pipe. The mean velocity distribution of the axial flow is similar to that of the toroidal pipe at small β0, but changes its shape as β0 increases, and attains the shape similar to that in a straight circular pipe when ,β0 = 1.89. It is also found that the critical Reynolds number, at which the flow shows a marginal behavior to turbulence, decreases as ,β0 increases for small ,β0, and then increases after taking a minimum at ,β0 ≈ 1.4 as ,β0 increases. The minimum of the critical Reynolds number experimentally obtained is about 400 at ,β0 ≈ 1.4.展开更多
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.
文摘A rotating disc column (RDC) with inner diameter 68 mm and 28 compartments is used in this study. Parameters including Sauter mean diameter, hold-up and mass transfer coefficient are measured experimentally un-der different operating conditions. The correlations in literature for molecular diffusion and enhancement factor equation including eddy diffusion, circulation and oscillation of drops are evaluated. A new equation for the effec-tive diffusion coefficient as a function of Reynolds number is proposed. The calculated values of mass transfer co-efficient and column height from the previous equations and present equation are compared with the experimental data. The results from the present equation are in very good agreement with the experimental results, which may be used in designing RDC columns.
文摘An objective of the present paper is to experimentally clarify the torsion effect on the flow in helical circular pipes. We have made six helical circular pipes having different pitches and common non-dimensional curvature δ of about 0.1. The torsion parameter β0, which is defined by β0 = τ/(2δ)1/2 with non-dimensional torsion r, are taken to be 0.02, 0.45, 0.69, 1.01, 1.38 and 1.89 covering from small to very large pitch. The velocity distributions and the turbulence of the flow are measured using an X-type hot-wire anemometer in the range of the Reynolds number from 200 to 20000. The results obtained are summarized as follows: The mean secondary flow pattern in a cross section of the pipe changes from an ordinary twin-vortex type as is seen in a curved pipe without torsion (toroidal pipe) to a single vortex type after one of the twin-vortex gradually disappears as β0 increases. The circulation direction of the single vortex is the same as the direction of torsion of the pipe. The mean velocity distribution of the axial flow is similar to that of the toroidal pipe at small β0, but changes its shape as β0 increases, and attains the shape similar to that in a straight circular pipe when ,β0 = 1.89. It is also found that the critical Reynolds number, at which the flow shows a marginal behavior to turbulence, decreases as ,β0 increases for small ,β0, and then increases after taking a minimum at ,β0 ≈ 1.4 as ,β0 increases. The minimum of the critical Reynolds number experimentally obtained is about 400 at ,β0 ≈ 1.4.