In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is simi...In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.展开更多
A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rota...A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rotary compactor is able to produce uniform slabs with the desired thickness of 65 mm all over around. Furthermore, 132 cored samples from the rotary compactor had been compacted uniformly with approximately 4% optimum air void content. In addition, performance tests results indicate that the rotary compactor produces asphalt mixturures with the requirements of resilient modulus, Marshall stability and flow. A weight factor was introduced for each fraction of aggregates in the degradation analysis to compensate the crushing effect of aggregates during mixing and compacting.展开更多
Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on ker...Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.展开更多
Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results in...Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.展开更多
Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotatio...Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.展开更多
This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design ana...This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design analysis and test results, effects of the exit-to-throat width ratio on the performance of the transonic turbine cascade were proposed. In order to investigate the influence of the exit-to-throat width ratio on the performance of the turbine cascade, a flow model of the convergent-divergent turbine cascade was constructed by using the theory of Laval nozzle. Then a method on how to choose the adequate exit-to-throat width ratio for the turbine cascade was proposed. To validate the method, it was used to calculate the adequate exit-to-throat width ratio for the high pressure rotor of the vaneless counter-rotating turbine. The high pressure turbine rotor was redesigned with the new exit-to-throat width ratio. Numerical simulation results show that the isentropic efficiency of the redesigned vaneless counter-rotating turbine under the design condition has increased by 0.9% and the efficiencies under the off-design conditions are also improved significantly. On the original design, a group of compressional waves are created from the suction surface after about 60% axial chord in the high pressure turbine rotor. While on the new design the compressional waves are eliminated. Furthermore, on the original design, the inner-extending waves first impinge on the next high pressure turbine rotor suction surface. Its reflection is strong enough and cannot be neglected. However on the new design the inner-extending waves are weakened or even eliminated. Another main progress is that the redesigned high pressure turbine rotor is of practical significance. In the original rotor, a part of the blade (from 60% axial chord to the trailing edge) is thin leading to the intensity problem and difficult arrangement of the cooling system. In the new design, however, the thickness distribution of the rotor airfoil along the chord is relatively reasonable. The intensity of the rotor is enhanced. It is possible to arrange the cooling system reasonably.展开更多
This paper presents a design theory and dynamic mechanical characterizations of the composite tape-spring hinge made by two parallel single tape springs.First,the theoretical models of moment-rotation angle on anisotr...This paper presents a design theory and dynamic mechanical characterizations of the composite tape-spring hinge made by two parallel single tape springs.First,the theoretical models of moment-rotation angle on anisotropy tape springs with antisymmetric laminates are proposed.Second,the relationships of moment-rotation angle for tape-spring hinges with different sizes are simulated and analyzed by means of the finite element method (FEM),which is in good agreement with the results from theoretical predictions.Finally,the dynamic vibration analysis for deployable composite tube hinges with different dampings is done during the process of deployment.展开更多
The aim of this investigation was to improve power performance of Savonius hydraulic turbine utilizing small stream for electric generation.An attempt was made to increase the power coefficient of runner by the use of...The aim of this investigation was to improve power performance of Savonius hydraulic turbine utilizing small stream for electric generation.An attempt was made to increase the power coefficient of runner by the use of flat shield plate placed upstream of the runner.The difference of the power coefficient is discussed in relation to clearance between the runner and the bottom wall and the rotation direction of the runner.The flow field around the runner was also examined visually to clarify influences of setting conditions on the power performance.From this study it was found that the power coefficient is achieved for 0.47 by only using a flat shield plate,the increase is up to 80% over the runner without the plate.Moreover,it is the proper condition that clearance ratio is 0.73 in this study.展开更多
A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure an...A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed.展开更多
In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable re- newable energy resource for power generation. The majority of technologies for exploiting the tidal st...In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable re- newable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis propellers, which can be derived from the design and operation of wind turbines. However, there are some peculiar features such as the propeller working in the seawater with free surface and the possible occurrence of cavitation as compared with wind turbines. Especially, for a coun- ter-rotating type tidal stream power turbine, it is difficult to accurately predict the interaction between the front and rear blades at the design stage by blade element momentum theory. As a result, CFD shows its advantage to predict the performance of counter-rotating type propellers of the tidal stream turbi^le. In order to improve the accuracy of CFD predictions, the predicted results must be verified with experimental values. In this paper, a CFD model using block-structured grid was set up and experimental test was performed in a water tunnel for a tidal stream turbine with counter-rotating type propellers. The comparison between CFD predictions and experimental data shows quite good agreement on the power coefficients, which provides an evidence of validation of the CFD model. Such results offer the necessary confidence in the accuracy of the set up CFD model for the coun- ter-rotating type tidal stream turbine.展开更多
基金Supported by the Key Research and Development Project of Yangzhou--Industry Preview and Key Projects(No.YZ2015011)
文摘In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.
基金the Ministry of Higher Education for funding this research
文摘A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rotary compactor is able to produce uniform slabs with the desired thickness of 65 mm all over around. Furthermore, 132 cored samples from the rotary compactor had been compacted uniformly with approximately 4% optimum air void content. In addition, performance tests results indicate that the rotary compactor produces asphalt mixturures with the requirements of resilient modulus, Marshall stability and flow. A weight factor was introduced for each fraction of aggregates in the degradation analysis to compensate the crushing effect of aggregates during mixing and compacting.
基金National Natural Science Foundation of China(No.60504033)
文摘Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.
基金Project(20080430221) supported by China Postdoctoral Science Foundation Project(2008ZF52058) supported by the Aeronautical Science Foundation of ChinaProject(2009A610026) supported by the Natural Science Foundation of Ningbo City,China
文摘Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.
基金supports by the project research aid from The University of Tokushima,Japan Science and Technology Agency and Komiya research aid
文摘Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.
基金supported by the National Natural Science Foundation of China (Grant No. 90718025)the National Basic Research Program of China ("973" Program) (Grant No. 2010CB227302)
文摘This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design analysis and test results, effects of the exit-to-throat width ratio on the performance of the transonic turbine cascade were proposed. In order to investigate the influence of the exit-to-throat width ratio on the performance of the turbine cascade, a flow model of the convergent-divergent turbine cascade was constructed by using the theory of Laval nozzle. Then a method on how to choose the adequate exit-to-throat width ratio for the turbine cascade was proposed. To validate the method, it was used to calculate the adequate exit-to-throat width ratio for the high pressure rotor of the vaneless counter-rotating turbine. The high pressure turbine rotor was redesigned with the new exit-to-throat width ratio. Numerical simulation results show that the isentropic efficiency of the redesigned vaneless counter-rotating turbine under the design condition has increased by 0.9% and the efficiencies under the off-design conditions are also improved significantly. On the original design, a group of compressional waves are created from the suction surface after about 60% axial chord in the high pressure turbine rotor. While on the new design the compressional waves are eliminated. Furthermore, on the original design, the inner-extending waves first impinge on the next high pressure turbine rotor suction surface. Its reflection is strong enough and cannot be neglected. However on the new design the inner-extending waves are weakened or even eliminated. Another main progress is that the redesigned high pressure turbine rotor is of practical significance. In the original rotor, a part of the blade (from 60% axial chord to the trailing edge) is thin leading to the intensity problem and difficult arrangement of the cooling system. In the new design, however, the thickness distribution of the rotor airfoil along the chord is relatively reasonable. The intensity of the rotor is enhanced. It is possible to arrange the cooling system reasonably.
文摘This paper presents a design theory and dynamic mechanical characterizations of the composite tape-spring hinge made by two parallel single tape springs.First,the theoretical models of moment-rotation angle on anisotropy tape springs with antisymmetric laminates are proposed.Second,the relationships of moment-rotation angle for tape-spring hinges with different sizes are simulated and analyzed by means of the finite element method (FEM),which is in good agreement with the results from theoretical predictions.Finally,the dynamic vibration analysis for deployable composite tube hinges with different dampings is done during the process of deployment.
基金supported by KAKENHI No.2231004 and Ministry of Environment
文摘The aim of this investigation was to improve power performance of Savonius hydraulic turbine utilizing small stream for electric generation.An attempt was made to increase the power coefficient of runner by the use of flat shield plate placed upstream of the runner.The difference of the power coefficient is discussed in relation to clearance between the runner and the bottom wall and the rotation direction of the runner.The flow field around the runner was also examined visually to clarify influences of setting conditions on the power performance.From this study it was found that the power coefficient is achieved for 0.47 by only using a flat shield plate,the increase is up to 80% over the runner without the plate.Moreover,it is the proper condition that clearance ratio is 0.73 in this study.
文摘A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed.
基金cosponsored by the New Energy and Industrial Technology Development Organization in JapanResearch Project: Grant-in-aid for Science Research C in Japan (2012-2014)
文摘In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable re- newable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis propellers, which can be derived from the design and operation of wind turbines. However, there are some peculiar features such as the propeller working in the seawater with free surface and the possible occurrence of cavitation as compared with wind turbines. Especially, for a coun- ter-rotating type tidal stream power turbine, it is difficult to accurately predict the interaction between the front and rear blades at the design stage by blade element momentum theory. As a result, CFD shows its advantage to predict the performance of counter-rotating type propellers of the tidal stream turbi^le. In order to improve the accuracy of CFD predictions, the predicted results must be verified with experimental values. In this paper, a CFD model using block-structured grid was set up and experimental test was performed in a water tunnel for a tidal stream turbine with counter-rotating type propellers. The comparison between CFD predictions and experimental data shows quite good agreement on the power coefficients, which provides an evidence of validation of the CFD model. Such results offer the necessary confidence in the accuracy of the set up CFD model for the coun- ter-rotating type tidal stream turbine.