Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas ve...Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.展开更多
Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective paramete...Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,展开更多
Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and ...Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.展开更多
This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field...This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation,Joule heating and viscous dissipation.Silver(Ag),copper(Cu),copper oxide(Cu O),aluminum oxide(Al_2O_3)and titanium dioxide(Ti O_2)have been taken under consideration as the nanoparticles and water(H_2O)as the base fluid.Using suitable similarity transformations,the governing partial differential equations(PDEs)of the modeled problem are transformed to the ordinary differential equations(ODEs).These ODEs are then solved numerically by applying the shooting method.For the particular situation,the results are compared with the available literature.The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically.It is witnessed that the skin friction coefficient is maximum for silver based nanofluid.Also,the velocity profile is found to diminish for the increasing values of the magnetic parameter.展开更多
基金Supported by the Fund of Science and Technology of Shanxi for Young Scholars(2007021012)Research Project of Shanxi Provincial Science and Technology Department(20090321113)
文摘Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.
文摘Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,
文摘Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.
文摘This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation,Joule heating and viscous dissipation.Silver(Ag),copper(Cu),copper oxide(Cu O),aluminum oxide(Al_2O_3)and titanium dioxide(Ti O_2)have been taken under consideration as the nanoparticles and water(H_2O)as the base fluid.Using suitable similarity transformations,the governing partial differential equations(PDEs)of the modeled problem are transformed to the ordinary differential equations(ODEs).These ODEs are then solved numerically by applying the shooting method.For the particular situation,the results are compared with the available literature.The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically.It is witnessed that the skin friction coefficient is maximum for silver based nanofluid.Also,the velocity profile is found to diminish for the increasing values of the magnetic parameter.