The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and rel...The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and related analysis. The thermal radiation and Joule heating effects are also considered. An electrically conducting fluid in a channel with compliant boundaries is taken. Solution expressions are established through assumptions of large wavelength and low Reynolds number. Impact of Taylor and Hartman numbers on the axial velocity is similar in a qualitative sense. There is reverse effect of Taylor number on the secondary velocity when compared with the axial velocity. Temperature and heat transfer coefficients are increasing functions of Taylor number.展开更多
文摘The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and related analysis. The thermal radiation and Joule heating effects are also considered. An electrically conducting fluid in a channel with compliant boundaries is taken. Solution expressions are established through assumptions of large wavelength and low Reynolds number. Impact of Taylor and Hartman numbers on the axial velocity is similar in a qualitative sense. There is reverse effect of Taylor number on the secondary velocity when compared with the axial velocity. Temperature and heat transfer coefficients are increasing functions of Taylor number.