期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的鱼眼图像目标检测算法
1
作者 韩彦峰 任奇 肖科 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期29-39,共11页
针对自动驾驶场景下车载鱼眼相机采集到的图像存在畸变严重、场景复杂、尺度变化剧烈、小目标多以及传统的目标检测模型的检测精度不高的问题,提出了一种基于YOLOv5s改进的鱼眼图像检测模型YOLOv5s-R.首先,为解决小目标难识别的问题,提... 针对自动驾驶场景下车载鱼眼相机采集到的图像存在畸变严重、场景复杂、尺度变化剧烈、小目标多以及传统的目标检测模型的检测精度不高的问题,提出了一种基于YOLOv5s改进的鱼眼图像检测模型YOLOv5s-R.首先,为解决小目标难识别的问题,提出随机裁剪多尺度训练的数据增强方法,该方法优于消融实验所得的最优数据增强方法.其次,为了提高模型的检测精度,在网络头部添加置换注意力机制与轻量化解耦头,增强模型对特征的提取能力与识别能力,并抑制噪声干扰.最后,模型额外增加角度预测项,实现旋转框目标检测.通过构建环形标签并用高斯函数对标签平滑,解决了旋转框角度的周期性问题;又对损失函数进行了优化,提出了RIOU,在CIOU的基础上增加角度惩罚项,提高了回归精度并加快了模型的收敛.实验结果表明,提出的YOLOv5s-R模型在WoodScape数据集上取得良好的检测效果,相比于原始的YOLOv5s模型,mAP@0.5、mAP@0.5∶0.95分别提升了6.8%、5.6%,达到82.6%、49.5%. 展开更多
关键词 YOLOv5s 自动驾驶 鱼眼图像 旋转目标检测
下载PDF
基于卷积神经网络的旋转船舶目标检测算法
2
作者 丁嘉良 《软件》 2023年第2期94-99,共6页
舰船目标检测任务在海上交通管制和航道安全维护等方面发挥着重要作用。为减小复杂背景的干扰,增强网络在遮挡环境下的检测准确率,本文在先进的S2A-Net(Single-shot Alignment Network)的基础上,采用了3种改进方法:首先增加骨干网络的深... 舰船目标检测任务在海上交通管制和航道安全维护等方面发挥着重要作用。为减小复杂背景的干扰,增强网络在遮挡环境下的检测准确率,本文在先进的S2A-Net(Single-shot Alignment Network)的基础上,采用了3种改进方法:首先增加骨干网络的深度,使得骨干网络更加充分提取目标特征;其次增加可变形卷积模块(Deformable Convolution Module,DCM),使得采样点可以根据目标形状自适应发生改变,更为全面精准地提取目标特征;最后,增添Cutout模块,使得网络在训练过程中学会应对遮挡情况,进一步提升目标检测精度。在HRSC2016数据集上进行的消融实验表明了本文提出的网络的有效性。 展开更多
关键词 遥感图像处理 旋转舰船目标检测 改进的S2A-Net 卷积神经网络
下载PDF
主动迁移学习的海上任意方向船只目标检测 被引量:1
3
作者 苏浩 丁胜 章超华 《计算机与现代化》 2021年第9期21-30,共10页
在基于深度学习的遥感图像目标检测任务中,船只目标通常呈现出任意方向排列的特性,而常见的水平框目标检测算法一般不能满足此类场景的应用需求。因此本文在单阶段Anchor-Free目标检测器CenterNet的基础上加入旋转角度预测分支,使其能... 在基于深度学习的遥感图像目标检测任务中,船只目标通常呈现出任意方向排列的特性,而常见的水平框目标检测算法一般不能满足此类场景的应用需求。因此本文在单阶段Anchor-Free目标检测器CenterNet的基础上加入旋转角度预测分支,使其能输出旋转边界框,以用于海上船只目标的检测。同时针对海上船只遥感数据集仅有水平边界框标注,无法直接适用于旋转框目标检测,且人工手动标注旋转框标签成本较高的问题,提出一种主动迁移学习的旋转框标签生成方法。首先,提出一种水平框-旋转框约束筛选算法,通过水平真值边界框来对旋转预测框进行监督约束,筛选出检测精度较高的图像加入训练集,然后通过迭代这一过程筛选出更多的图像,最后通过标签类别匹配,完成对数据集的旋转框自动化标注工作。本文最终对海上船只遥感图像数据集BDCI中约65.59%的图片进行旋转框标注,并手动标注部分未标注的图片作为测试集,将本文方法标注的图片作为训练集进行验证,评估指标AP50达到90.41%,高于其他旋转框检测器,从而表明本文方法的有效性。 展开更多
关键词 遥感图像 旋转目标检测 迁移学习 Anchor-Free CenterNet
下载PDF
基于重参数化广义金字塔与扩张残差的遥感图像旋转框算法
4
作者 董宝鑫 王江涛 《电子测量与仪器学报》 2024年第12期54-61,共8页
由于遥感图像中目标数量多而密集,且背景信息复杂,导致现有检测算法对于小目标检测精度不够理想,针对该问题,提出了一种基于重参数化广义金字塔与扩张残差的遥感图像小目标旋转框检测算法DRS-YOLO。首先,为克服主干网络对特征提取不足... 由于遥感图像中目标数量多而密集,且背景信息复杂,导致现有检测算法对于小目标检测精度不够理想,针对该问题,提出了一种基于重参数化广义金字塔与扩张残差的遥感图像小目标旋转框检测算法DRS-YOLO。首先,为克服主干网络对特征提取不足的缺点,以旋转算法YOLOv8OBB为基础,在颈部网络引入扩张式残差模块,以增强遥感目标语义信息。其次,为提高网络对于多尺度目标的检测性能,使底层特征信息流向高层,引入重参数化泛化特征金字塔网络替换颈部网络结构,更高效的融合多尺度特征,易于捕捉高层语义和低层空间细节。最后,为进一步提高网络对于小目标的检测性能,基于SPPF提出SPPFI对目标感受野进行扩展,提升了对遥感目标的检测精度。在公开的DIOR数据集和HRSC2016数据集上相较于原YOLOv8sOBB基线网络的检测精度分别提升了1.5%和9.8%。实验表明改进后的算法显著增强了对遥感图像小目标的检测性能。 展开更多
关键词 深度学习 遥感图像 旋转目标检测 重参数广义金字塔 DRS-YOLO
下载PDF
基于R2CNN的天气雷达边界层辐合线识别算法
5
作者 郑玉 徐芬 王亚强 《应用气象学报》 CSCD 北大核心 2024年第6期654-666,共13页
边界层辐合线是触发对流的中尺度天气系统之一,边界层辐合线的精细化识别对于揭示其形成、演变及与其他系统相互作用机制至关重要。目前自动识别技术在适应边界层辐合线多样性(如尺度、强度和形状)方面存在局限。旋转区域卷积神经网络(R... 边界层辐合线是触发对流的中尺度天气系统之一,边界层辐合线的精细化识别对于揭示其形成、演变及与其他系统相互作用机制至关重要。目前自动识别技术在适应边界层辐合线多样性(如尺度、强度和形状)方面存在局限。旋转区域卷积神经网络(R2CNN)可提高识别准确性、鲁棒性和泛化能力。综合考虑天气雷达型号和分辨率的多样性,针对性构建识别数据集用于模型训练,调整相应参数得到识别模型,并利用交并比和置信度评估检验识别效果。结果表明:基于R2CNN的边界层辐合线识别算法在使用较低交并比阈值时命中率更高且空报率更低,当置信度为0.7时,TS(threat score)评分最高。与现有的阵风锋识别算法(Machine Intelligence Gust Front Algorithm,MIGFA)效果相比,R2CNN在减少误报、提升命中率及平衡识别频率等关键性能方面优势显著,适用于业务应用与推广。 展开更多
关键词 边界层辐合线 低空飞行安全 阵风锋 R2CNN 旋转目标检测
下载PDF
改进YOLOX的SAR近岸区域船只检测方法 被引量:2
6
作者 刘霖 肖嘉荣 +2 位作者 王晓蓓 张德生 喻忠军 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期44-53,共10页
针对SAR近岸区域船只检测准确率低与虚警率高的问题,提出一种基于改进注意力机制与旋转框的SAR近岸区域船只检测方法。该方法首先通过改进坐标注意力机制并引入至特征提取网络中,提升网络的特征提取能力;其次,增加角度分类头,并引入二... 针对SAR近岸区域船只检测准确率低与虚警率高的问题,提出一种基于改进注意力机制与旋转框的SAR近岸区域船只检测方法。该方法首先通过改进坐标注意力机制并引入至特征提取网络中,提升网络的特征提取能力;其次,增加角度分类头,并引入二维高斯分布,计算预测分布与目标分布的KL散度评估旋转框损失值,完成目标的角度信息提取;再基于YOLOX算法中的无锚框(AF)机制,减少候选框冗余,使模型轻量化并进一步提高定位精度。最后在公开数据集offical-ssdd上进行测试,在嵌入式平台(NVIDIA Jetson AGX Xavier)上对模型进行推理验证。该算法模型计算参数仅1.14 M,在近岸情况下平均检测精度较YOLOX模型提高了18.77%,总体检测精度达到94.2%。验证结果表明,该算法适用于复杂场景下任意方向的密集船只目标检测,满足实时处理需求。 展开更多
关键词 改进坐标注意力机制 近岸区域 旋转目标框 SAR 船只检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部