We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and presen...We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and present a theoreticalstudy of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as wellas the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cellsthat abound in the literature. From the theoretical analysis, we find that the cellshape, coating as well as materialparameters can change the ER spectrum. We demonstrate a good agreement between our theoretical predictions andexperimental data on human erthrocytes suspensions.展开更多
文摘We have investigated the pressure effect on the eletrorotation (ER) spectrum of living cell suspensions byconsidering the particle shape effect. In particular, we consider coated oblate spheroidal particles and present a theoreticalstudy of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as wellas the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cellsthat abound in the literature. From the theoretical analysis, we find that the cellshape, coating as well as materialparameters can change the ER spectrum. We demonstrate a good agreement between our theoretical predictions andexperimental data on human erthrocytes suspensions.