In this article, the authors propose the production of ethanol from cellulose as an alternative to oil. Cellulosic-ethanol will reduce greenhouse gas emissions, and provide a means to prevent forest fires. This liquid...In this article, the authors propose the production of ethanol from cellulose as an alternative to oil. Cellulosic-ethanol will reduce greenhouse gas emissions, and provide a means to prevent forest fires. This liquid dense fuel was selected because it: (1) easily transported and dispensed as a fuel; (2) can be handled by the existing fuel distribution infrastructure; and (3) unlike its commercial competitor, Me-OH (Methanol), Et-OH (Ethanol), is edible, thus being biodegradable and nontoxic. Forest residue ethanol is cheaper to produce and more environmentally friendly than other forms of ethanol fuel. Furthermore, forests would have less available ground fuel for fires. The potential decline of forest fires would then reduce the carbon footprint attributed directly to forest fires. In combination with ethanol fuel combustion, carbon emissions can be reduced by more than 70% compared to gasoline combustion. We used GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) software to assess the life cycles of different fuel pathways. In conclusion, cellulosic ethanol fuel is clearly an answer to decrease dependency on current oil imports and prevent forest fires.展开更多
文摘In this article, the authors propose the production of ethanol from cellulose as an alternative to oil. Cellulosic-ethanol will reduce greenhouse gas emissions, and provide a means to prevent forest fires. This liquid dense fuel was selected because it: (1) easily transported and dispensed as a fuel; (2) can be handled by the existing fuel distribution infrastructure; and (3) unlike its commercial competitor, Me-OH (Methanol), Et-OH (Ethanol), is edible, thus being biodegradable and nontoxic. Forest residue ethanol is cheaper to produce and more environmentally friendly than other forms of ethanol fuel. Furthermore, forests would have less available ground fuel for fires. The potential decline of forest fires would then reduce the carbon footprint attributed directly to forest fires. In combination with ethanol fuel combustion, carbon emissions can be reduced by more than 70% compared to gasoline combustion. We used GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) software to assess the life cycles of different fuel pathways. In conclusion, cellulosic ethanol fuel is clearly an answer to decrease dependency on current oil imports and prevent forest fires.