Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering perfo...Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering performance. Revolution speeds were changed from 100 to 550 with 50 increments. A skirt is the driving source for cyclone operation. The influence of several design factors, such as the skirt length, the skirt gap and the return length to filtering performance was investigated under the particle diameter 100μm of debris material(Al, s.g.=2.7). The filtering performance was also investigated with the skirt length 28 mm changing the debris diameters from 1μm to 50μm. The flow rate of the working fluid was maintained at 0.55kg/s. It has been verified that the most influential factors to the filtering efficiencies was the skirt gap between the cyclone generator and the cyclone vessel.展开更多
基金supported by the Production Technology Commercialization Support Program through Ministry of Industry Ordinary(10-04)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2014R1A1A4A01005191)
文摘Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering performance. Revolution speeds were changed from 100 to 550 with 50 increments. A skirt is the driving source for cyclone operation. The influence of several design factors, such as the skirt length, the skirt gap and the return length to filtering performance was investigated under the particle diameter 100μm of debris material(Al, s.g.=2.7). The filtering performance was also investigated with the skirt length 28 mm changing the debris diameters from 1μm to 50μm. The flow rate of the working fluid was maintained at 0.55kg/s. It has been verified that the most influential factors to the filtering efficiencies was the skirt gap between the cyclone generator and the cyclone vessel.