期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于9轴姿态传感器的CNN旗语动作识别方法 被引量:5
1
作者 钟岳 方虎生 +2 位作者 张国玉 王钊 朱经纬 《计算机科学》 CSCD 北大核心 2021年第6期153-158,共6页
区别于传统光纤传感器、图像识别和Kinect深度图像的旗语动作识别方法,提出了一种基于9轴姿态传感器的旗语动作识别方法。该方法通过佩戴在手腕处的9轴姿态传感器来采集旗语动作的3轴加速度、3轴角速度以及3轴磁偏角数据;在运用卷积神... 区别于传统光纤传感器、图像识别和Kinect深度图像的旗语动作识别方法,提出了一种基于9轴姿态传感器的旗语动作识别方法。该方法通过佩戴在手腕处的9轴姿态传感器来采集旗语动作的3轴加速度、3轴角速度以及3轴磁偏角数据;在运用卷积神经网络(Convolutional Neural Network, CNN)分类模型的基础上对其中的数据进行预处理,并通过分类识别算法对其进行改进;在数据预处理阶段,利用小波分解与重构函数对采集到的9轴数据进行高频去噪和低频信息提取,通过时间序列加窗进行分割处理,对各动作样本进行维度和长度统一;在特征提取阶段,采用构建的双卷积层、单池化层、单全连接层网络模型对重构数据进行特征提取;在分类识别阶段,提出一种CrossEntropy-Logistic联合损失函数来对5种动作进行迭代训练。实验结果表明,所提方法利用detcoef小波分解与重构函数对信号进行低频细节系数提取并采用一维CNN对降噪后的数据进行特征提取,通过CL联合损失函数对预测损失值和预测概率进行融合,分析所得到的训练准确率与测试准确率,在与各类方法的对比中取得了最高值,其平均训练识别率可达99%以上,测试准确率可达94%。 展开更多
关键词 卷积神经网络 9轴姿态传感器 旗语动作识别 CrossEntropy-Logistic 小波分解与重构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部