The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more...A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.展开更多
This paper presents a scenario of forest fire suppression using UAVs (Unmanned Aerial Vehicles) and addresses task assignment algorithm to coordinate UAVs. Forest fires are a major problem in many nations and fast e...This paper presents a scenario of forest fire suppression using UAVs (Unmanned Aerial Vehicles) and addresses task assignment algorithm to coordinate UAVs. Forest fires are a major problem in many nations and fast extinguishing forest fires brings a lot of ecological advantages so proper use of firefighting resources is very critical. In this sense, multi UAVs forest fire suppression system can be effective way to prevent fire outbreaks. In multi agent system, an appropriate task assignment according to the SA (Situational Awareness) is the most essential to conduct mission. We should consider real time re-planning or re-scheduling of multi UAVs team because environmental situations such as wind are changeable and that changes affect the forest fire spreading. Furthermore, we have to think about convergence to a consistent SA because it may take too much time. CBBA (Consensus-Based Bundle Algorithm) is robust decentralized task assignment tool so it can be implemented in real time re-planning application. A simulation model which is the main topic in this paper shows that multi UAVs can be properly operated to suppress forest fires even if there are unpredictable random factors and partial disconnection. The simulation model includes concrete operating scenarios and recursive task re-assign algorithm until fires in the whole area are suppressed.展开更多
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
文摘A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.
文摘This paper presents a scenario of forest fire suppression using UAVs (Unmanned Aerial Vehicles) and addresses task assignment algorithm to coordinate UAVs. Forest fires are a major problem in many nations and fast extinguishing forest fires brings a lot of ecological advantages so proper use of firefighting resources is very critical. In this sense, multi UAVs forest fire suppression system can be effective way to prevent fire outbreaks. In multi agent system, an appropriate task assignment according to the SA (Situational Awareness) is the most essential to conduct mission. We should consider real time re-planning or re-scheduling of multi UAVs team because environmental situations such as wind are changeable and that changes affect the forest fire spreading. Furthermore, we have to think about convergence to a consistent SA because it may take too much time. CBBA (Consensus-Based Bundle Algorithm) is robust decentralized task assignment tool so it can be implemented in real time re-planning application. A simulation model which is the main topic in this paper shows that multi UAVs can be properly operated to suppress forest fires even if there are unpredictable random factors and partial disconnection. The simulation model includes concrete operating scenarios and recursive task re-assign algorithm until fires in the whole area are suppressed.