期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
无人机多机协作探索煤矿灾变环境算法 被引量:2
1
作者 刘栋 童敏明 路红蕊 《计算机应用》 CSCD 北大核心 2017年第8期2401-2404,2420,共5页
针对目前煤矿灾变环境下救援机器人探索效率低的问题,提出了一种使用无人机多机协同探索煤矿灾变环境的改进型边界探索算法。该算法在效用值边界探索算法的基础上增加了对无人机导航角度因素的考虑,同时引入分散度函数作为评判机制来构... 针对目前煤矿灾变环境下救援机器人探索效率低的问题,提出了一种使用无人机多机协同探索煤矿灾变环境的改进型边界探索算法。该算法在效用值边界探索算法的基础上增加了对无人机导航角度因素的考虑,同时引入分散度函数作为评判机制来构建目标函数,并使用蚁群算法对该目标函数进行求解。最后利用Matlab软件在栅格化地图上进行了仿真实验。实验结果表明,和效用值边界探索算法相比,改进型边界探索算法减少了探测过程中的重复覆盖和拥挤现象,缩短了探测时间,降低了约30%的能量消耗,提高了无人机多机系统的整体探索效率。 展开更多
关键词 无人机多机 边界探索 分散度函数 环境侦测 探索效率
下载PDF
Improved YOLOv8-Based Target Detection Algorithm for UAV Aerial Image
2
作者 JIANG Mao-xiang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期86-96,共11页
In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm... In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm based on YOLOv8 was proposed in this study.To begin with,the CoordAtt attention mechanism was employed to enhance the feature extraction capability of the backbone network,thereby reducing interference from backgrounds.Additionally,the BiFPN feature fusion network with an added small object detection layer was used to enhance the model's ability to perceive for small objects.Furthermore,a multi-level fusion module was designed and proposed to effectively integrate shallow and deep information.The use of an enhanced MPDIoU loss function further improved detection performance.The experimental results based on the publicly available VisDrone2019 dataset showed that the improved model outperformed the YOLOv8 baseline model,mAP@0.5 improved by 20%,and the improved method improved the detection accuracy of the model for small targets. 展开更多
关键词 UAV YOLOv8 Attentional mechanisms Multi-scale detection MPDIoU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部