期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优子集选择的水稻穗无人机图像分割方法 被引量:4
1
作者 曹英丽 刘亚帝 +2 位作者 马殿荣 李昂 许童羽 《农业机械学报》 EI CAS CSCD 北大核心 2020年第8期171-177,188,共8页
为探索有效的稻穗识别特征选取方法,解决基于无人机数码影像水稻产量估测中图像颜色空间各个通道或指数对水稻穗识别能力不清的问题,利用2017年和2018年沈阳农业大学超级稻成果转化基地水稻试验田无人机高清数码影像、地面小区样方内水... 为探索有效的稻穗识别特征选取方法,解决基于无人机数码影像水稻产量估测中图像颜色空间各个通道或指数对水稻穗识别能力不清的问题,利用2017年和2018年沈阳农业大学超级稻成果转化基地水稻试验田无人机高清数码影像、地面小区样方内水稻穗数量等实测数据,构建了水稻穗、叶、背景的3分类图像样本库,应用最优子集选择(Best subset selection)算法分析了RGB和HSV颜色空间各个通道或指数对水稻穗的识别能力,提取适合东北粳稻稻穗图像分割的7种特征参数,以此特征为输入构建了基于BP神经网络的稻穗分割模型,进一步对稻穗图像进行连通域分析,获取稻穗数量,并与地面实测数据进行比较。结果表明:最优子集选择算法获取的稻穗像素分割特征参数为R、B、H、S、V、GLI、ExG等7种,飞行高度为3 m时,稻穗分割效果最好,对应的交叉验证均方误差MSE为0.0363;构建的稻穗分割模型可有效实现东北粳稻稻穗的提取,3、6、9 m飞行高度下,拍摄图像稻穗数量提取的均方根误差分别为9.03、11.21、13.10,平均绝对百分误差分别为10.60%、14.88%和17.16%。 展开更多
关键词 水稻穗 无人机数码影像 最优子集选择 图像分割 特征选取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部