期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
港口门座式起重机点检制约因素分析及改进
1
作者 孙成刚 申航 牟华宇 《设备管理与维修》 2024年第14期137-139,共3页
复杂的港口作业环境和恶劣的工作条件对门座式起重机的正常运转造成较大影响,需要加强其点检频次和范围。研究分析门座式起重机点检的制约因素,并提出针对性改进方法。
关键词 门座式起重机 人工点检 制约因素分析 点检模式改进 无人机点检
下载PDF
SiamADN:Siamese Attentional Dense Network for UAV Object Tracking 被引量:2
2
作者 WANG Zhi WANG Ershen +2 位作者 HUANG Yufeng YANG Siqi XU Song 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期587-596,共10页
Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movemen... Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application. 展开更多
关键词 unmanned aerial vehicle(UAV) object tracking dense network corner detection siamese network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部