为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation,GA-BP)和支持向量回归(support vector regression,SVR)的组合预测模型(SVR-GA-BP)。通过...为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation,GA-BP)和支持向量回归(support vector regression,SVR)的组合预测模型(SVR-GA-BP)。通过无人机采集混合交通流高清视频,利用视频识别软件Tracker提取机非交通冲突轨迹数据,以距离碰撞时间(time to collision,TTC)为判别指标,确定机非冲突严重程度。基于偏相关性分析确定交通量、平均速度、大车比例等为机非交通冲突的显著影响因素,选取均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)等五种评价指标对SVR模型、BP神经网络、SVR-GA-BP模型的预测值进行精度分析。结果表明,组合模型在一般冲突预测中精度为97.1%,相比SVR和BP神经网络分别提高6.9%和2.5%,在严重冲突预测中精度为96.1%,相比SVR和BP神经网络分别提高7.3%和5.1%。可见SVR-GA-BP组合模型能够有效预测无信号环形交叉口的机非冲突且精度最高,可为同类型交叉口的安全评价提供借鉴。展开更多
文摘为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation,GA-BP)和支持向量回归(support vector regression,SVR)的组合预测模型(SVR-GA-BP)。通过无人机采集混合交通流高清视频,利用视频识别软件Tracker提取机非交通冲突轨迹数据,以距离碰撞时间(time to collision,TTC)为判别指标,确定机非冲突严重程度。基于偏相关性分析确定交通量、平均速度、大车比例等为机非交通冲突的显著影响因素,选取均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)等五种评价指标对SVR模型、BP神经网络、SVR-GA-BP模型的预测值进行精度分析。结果表明,组合模型在一般冲突预测中精度为97.1%,相比SVR和BP神经网络分别提高6.9%和2.5%,在严重冲突预测中精度为96.1%,相比SVR和BP神经网络分别提高7.3%和5.1%。可见SVR-GA-BP组合模型能够有效预测无信号环形交叉口的机非冲突且精度最高,可为同类型交叉口的安全评价提供借鉴。