A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in m...With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.展开更多
Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyrist...Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing...For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.展开更多
AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedu...AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.展开更多
This paper presents a potential solution of power flow constraints of BPS (Bangladesh power system) using VAR (volt ampere reactive) compensation. VAR compensation is defined as the management of reactive power to...This paper presents a potential solution of power flow constraints of BPS (Bangladesh power system) using VAR (volt ampere reactive) compensation. VAR compensation is defined as the management of reactive power to improve the performance ofac power systems. The concept of VAR compensation embraces a wide and diverse field of both system and customer problems, especially related with power quality issues, since most of power quality problems can be attenuated or solved with an adequate control of reactive power. VAR compensation in transmission systems also improves the stability of the ac system by increasing the maximum active power that can be transmitted. It also helps to maintain a substantially fiat voltage profile at all levels of power transmission. BPS is currently facing problems in few 132 grid points where the thermal limits of transmission are often exceeded. BPS is also foreseeing problem in transmitting additional power from the new generating units in Sylhet to Dhaka zone. This paper investigates the potential solution to these transmission problems.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection th...The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.展开更多
This paper deals with power transfer capability enhancement using two common Flexible Alternating Current Transmission Systems (FACTS) devices, Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensat...This paper deals with power transfer capability enhancement using two common Flexible Alternating Current Transmission Systems (FACTS) devices, Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC). For this purpose, at first the optimal place of TCSC and SVC is investigated and the optimal size is determined. At the end, a comparison is made between the two FACTS devices. For calculating Available Transfer Capability (ATC), Repeated Power-Flow (RPF) rule used, and the network limitations such as voltage, stability, thermal capacity, and power generation limits are taken into consideration. The proposed algorithm is run on a sample network. Results show effectiveness of TCSC in situations where the thermal limit is the dominant limitation of the network. In such situations, SVC is almost useless. It was also seen that under conditions of voltage limitations, both elements are helpful for the enhancement of ATC.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system asp...The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.展开更多
In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect ...In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.展开更多
Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnect...Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.展开更多
When the authors research on the fact that some SVC (static var compensator) substations connected at some buses in power system, they realized that some main functions ensured to operate well. Those are: compensat...When the authors research on the fact that some SVC (static var compensator) substations connected at some buses in power system, they realized that some main functions ensured to operate well. Those are: compensate reactive power following value U* according to the requirements of the Vietnamese power system dispath center, flit harmonic by passive filter... However, it still has some disadvantages of this substation that need to be overcome: use large number of main devices, generate harmonics by itself, cause a lot of active power losses. Thus, the authors have an idea to solve these problems by applying a bidirectional power converter with having difference circuit structure and PWM (pulse width modulation) controller with SVM (space vector modulation) pulse generated section, so compensative current which is created by inductance element can be reserved, adjust continuos and always has full sinusoidal form, not generating harmonic. The benefit of this new solution is to eliminate the three above fundamental disadvantages. This new model is built based on authors' research about BESS (battery energy storage system). The research results have been verified by simulations in Matlab/Simulink software.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmo...Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmonic generation, phase unbalance) down to the prescribed limits. This primarily refers to the presence of non-linear consumers, leading to distortion of the basic parameters of voltage and current, in steady or transient conditions, and therefore the deformation of waveform. One way to reduce the negative feedback effects, especially with inductive loads, is the reactive energy compensation. The paper presents one of the solution for reactive power compensation, applied on the pumping station of public company "Waterworks and Sewerage---Bar", Bar.展开更多
As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power trans...As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.展开更多
This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator...This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.展开更多
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
文摘With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.
文摘Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
基金The Science Foundation of State Grid Xinjiang(No.SGTYHT/19-JS-215)。
文摘For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.
文摘AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.
文摘This paper presents a potential solution of power flow constraints of BPS (Bangladesh power system) using VAR (volt ampere reactive) compensation. VAR compensation is defined as the management of reactive power to improve the performance ofac power systems. The concept of VAR compensation embraces a wide and diverse field of both system and customer problems, especially related with power quality issues, since most of power quality problems can be attenuated or solved with an adequate control of reactive power. VAR compensation in transmission systems also improves the stability of the ac system by increasing the maximum active power that can be transmitted. It also helps to maintain a substantially fiat voltage profile at all levels of power transmission. BPS is currently facing problems in few 132 grid points where the thermal limits of transmission are often exceeded. BPS is also foreseeing problem in transmitting additional power from the new generating units in Sylhet to Dhaka zone. This paper investigates the potential solution to these transmission problems.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.
文摘The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.
文摘This paper deals with power transfer capability enhancement using two common Flexible Alternating Current Transmission Systems (FACTS) devices, Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC). For this purpose, at first the optimal place of TCSC and SVC is investigated and the optimal size is determined. At the end, a comparison is made between the two FACTS devices. For calculating Available Transfer Capability (ATC), Repeated Power-Flow (RPF) rule used, and the network limitations such as voltage, stability, thermal capacity, and power generation limits are taken into consideration. The proposed algorithm is run on a sample network. Results show effectiveness of TCSC in situations where the thermal limit is the dominant limitation of the network. In such situations, SVC is almost useless. It was also seen that under conditions of voltage limitations, both elements are helpful for the enhancement of ATC.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.
文摘The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.
文摘In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.
文摘Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.
文摘When the authors research on the fact that some SVC (static var compensator) substations connected at some buses in power system, they realized that some main functions ensured to operate well. Those are: compensate reactive power following value U* according to the requirements of the Vietnamese power system dispath center, flit harmonic by passive filter... However, it still has some disadvantages of this substation that need to be overcome: use large number of main devices, generate harmonics by itself, cause a lot of active power losses. Thus, the authors have an idea to solve these problems by applying a bidirectional power converter with having difference circuit structure and PWM (pulse width modulation) controller with SVM (space vector modulation) pulse generated section, so compensative current which is created by inductance element can be reserved, adjust continuos and always has full sinusoidal form, not generating harmonic. The benefit of this new solution is to eliminate the three above fundamental disadvantages. This new model is built based on authors' research about BESS (battery energy storage system). The research results have been verified by simulations in Matlab/Simulink software.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
文摘Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmonic generation, phase unbalance) down to the prescribed limits. This primarily refers to the presence of non-linear consumers, leading to distortion of the basic parameters of voltage and current, in steady or transient conditions, and therefore the deformation of waveform. One way to reduce the negative feedback effects, especially with inductive loads, is the reactive energy compensation. The paper presents one of the solution for reactive power compensation, applied on the pumping station of public company "Waterworks and Sewerage---Bar", Bar.
文摘As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.
文摘This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.