This paper describes an equation discovery approach based on machine learning using LAGRAMGE as an equation discovery tool, with two sources of input, a dataset and model presented in context-free grammar. The approac...This paper describes an equation discovery approach based on machine learning using LAGRAMGE as an equation discovery tool, with two sources of input, a dataset and model presented in context-free grammar. The approach is searching a large range of po- tential equations by a specific inodel. The parameters of the equation are fitted to find the best equations. The experiments are illustratedwith commodity prices from the London Metal Exchange for the period of January-October 2009. The outputs of the experiments are a large mumber of equations; some of the equations display that the predicted prices are following the market trends in perfect patterns.展开更多
文摘This paper describes an equation discovery approach based on machine learning using LAGRAMGE as an equation discovery tool, with two sources of input, a dataset and model presented in context-free grammar. The approach is searching a large range of po- tential equations by a specific inodel. The parameters of the equation are fitted to find the best equations. The experiments are illustratedwith commodity prices from the London Metal Exchange for the period of January-October 2009. The outputs of the experiments are a large mumber of equations; some of the equations display that the predicted prices are following the market trends in perfect patterns.