In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Base...In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.展开更多
We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). Th...We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.展开更多
文摘In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.
文摘We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.