This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator...This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.展开更多
A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit v...A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.展开更多
文摘This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.
文摘A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.