为解决有载调压变压器分接头(on-load tap changer,OLTC)、电容器组和分布式电源(distributed generation,DG)的协调优化问题,提出一种配电网动态无功优化方法。该方法采用最优分割法分别对OLTC和电容器组的静态最优投切序列进行有序聚...为解决有载调压变压器分接头(on-load tap changer,OLTC)、电容器组和分布式电源(distributed generation,DG)的协调优化问题,提出一种配电网动态无功优化方法。该方法采用最优分割法分别对OLTC和电容器组的静态最优投切序列进行有序聚类,在满足最大动作次数约束的前提下实现控制设备在时间上的解耦。分析了常见DG无功出力极限的影响因素,考虑OLTC、电容器组和DG在电压无功调节中的控制能力,提出三者的协调优化方法。由于OLTC的档位调节直接影响整个线路的电压无功分布,首先根据各时刻的静态优化结果和最优分割法确定OLTC的动作时刻及档位;然后,采用最优分割法确定电容器组的动作时刻,并将电容器组的投切容量和DG无功出力联合优化,得到最终的控制方案。最后,通过某实际电网算例验证了所提方法的合理性和有效性。展开更多
文摘为解决有载调压变压器分接头(on-load tap changer,OLTC)、电容器组和分布式电源(distributed generation,DG)的协调优化问题,提出一种配电网动态无功优化方法。该方法采用最优分割法分别对OLTC和电容器组的静态最优投切序列进行有序聚类,在满足最大动作次数约束的前提下实现控制设备在时间上的解耦。分析了常见DG无功出力极限的影响因素,考虑OLTC、电容器组和DG在电压无功调节中的控制能力,提出三者的协调优化方法。由于OLTC的档位调节直接影响整个线路的电压无功分布,首先根据各时刻的静态优化结果和最优分割法确定OLTC的动作时刻及档位;然后,采用最优分割法确定电容器组的动作时刻,并将电容器组的投切容量和DG无功出力联合优化,得到最终的控制方案。最后,通过某实际电网算例验证了所提方法的合理性和有效性。