目前立体图像质量评价算法缺乏可靠的预测性能,主要表现在研究人类视觉系统时生物学理论薄弱,并且已有的浅层模型无法模拟出视觉信息复杂的处理过程。针对上述问题,提出一种基于交互式卷积神经网络的无参考立体图像质量评价算法。根据...目前立体图像质量评价算法缺乏可靠的预测性能,主要表现在研究人类视觉系统时生物学理论薄弱,并且已有的浅层模型无法模拟出视觉信息复杂的处理过程。针对上述问题,提出一种基于交互式卷积神经网络的无参考立体图像质量评价算法。根据初级视觉区域的双目视觉机制,融合左、右视图生成独眼特征图,并采用高斯差分算法提取左、右视图边缘信息,计算边缘求和以及差分特征图;搭建交互式卷积神经网络,整合特征图,实现深度特征学习和质量回归预测。在LIVE立体图像库上的Pearson线性相关系数(Pearson Linear Correlation Coefficient,PLCC)达到0.95以上,结果表明采用该算法能有效地解决失真立体图像质量评价问题。展开更多
针对立体图像质量评价问题,基于人眼观测图像的感知特性,提出一种双通道立体图像质量评价算法。首先,获取双目视图的拉普拉斯金字塔序列构建融合图,采用并行域分解多权重化策略提取双目局部质量感知特征;然后,结合视觉平衡特性引入语义...针对立体图像质量评价问题,基于人眼观测图像的感知特性,提出一种双通道立体图像质量评价算法。首先,获取双目视图的拉普拉斯金字塔序列构建融合图,采用并行域分解多权重化策略提取双目局部质量感知特征;然后,结合视觉平衡特性引入语义特征通道提取双目高层次语义特征;最后,在支持向量回归的基础上得到双通道主客观图像质量评价值的关系映射。双通道网络集成了包含视差信息的多局部细节特征与全局语义特征,在LIVE 3D phaseⅠ与LIVE 3D phaseⅡ立体图像库进行性能测试。结果表明:所提算法所得预测值与主观评价值间具有良好的一致性。展开更多
文摘目前立体图像质量评价算法缺乏可靠的预测性能,主要表现在研究人类视觉系统时生物学理论薄弱,并且已有的浅层模型无法模拟出视觉信息复杂的处理过程。针对上述问题,提出一种基于交互式卷积神经网络的无参考立体图像质量评价算法。根据初级视觉区域的双目视觉机制,融合左、右视图生成独眼特征图,并采用高斯差分算法提取左、右视图边缘信息,计算边缘求和以及差分特征图;搭建交互式卷积神经网络,整合特征图,实现深度特征学习和质量回归预测。在LIVE立体图像库上的Pearson线性相关系数(Pearson Linear Correlation Coefficient,PLCC)达到0.95以上,结果表明采用该算法能有效地解决失真立体图像质量评价问题。
文摘针对立体图像质量评价问题,基于人眼观测图像的感知特性,提出一种双通道立体图像质量评价算法。首先,获取双目视图的拉普拉斯金字塔序列构建融合图,采用并行域分解多权重化策略提取双目局部质量感知特征;然后,结合视觉平衡特性引入语义特征通道提取双目高层次语义特征;最后,在支持向量回归的基础上得到双通道主客观图像质量评价值的关系映射。双通道网络集成了包含视差信息的多局部细节特征与全局语义特征,在LIVE 3D phaseⅠ与LIVE 3D phaseⅡ立体图像库进行性能测试。结果表明:所提算法所得预测值与主观评价值间具有良好的一致性。