将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,...将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。展开更多
针对传统粒子滤波目标跟踪算法存在粒子退化的问题,提出了基于马尔可夫链-蒙特卡罗(Markovchain Monte Carlo,MCMC)无味粒子滤波的目标跟踪算法。该算法采用无味卡尔曼滤波(unscented Kalmanfilter,UKF)生成粒子滤波的提议分布,来代替...针对传统粒子滤波目标跟踪算法存在粒子退化的问题,提出了基于马尔可夫链-蒙特卡罗(Markovchain Monte Carlo,MCMC)无味粒子滤波的目标跟踪算法。该算法采用无味卡尔曼滤波(unscented Kalmanfilter,UKF)生成粒子滤波的提议分布,来代替传统粒子滤波算法采用状态转移先验概率作为粒子滤波的提议分布,以改善滤波效果,然后在无味粒子滤波的基础上融合了典型的MCMC抽样算法(Metropolis Hastings,MH),从而可以减少传统粒子滤波未考虑当前量测对状态的估计作用所带来的影响。融合后的算法将当前量测信息融入到滤波过程中,并使采样粒子更加多样化。实验结果表明,该算法较传统方法在跟踪精度方面有显著的提高。展开更多
探讨了TMA(目标运动分析)中基本的非线性估计问题,介绍了基于无味变换(Unscented Transform ation-UT)的无味卡尔曼滤波(Unscented Kalm an F iltering-UKF)算法的设计思想与具体实现,特别针对空对海单站只测方位与到达时间TMA(BTO-TMA...探讨了TMA(目标运动分析)中基本的非线性估计问题,介绍了基于无味变换(Unscented Transform ation-UT)的无味卡尔曼滤波(Unscented Kalm an F iltering-UKF)算法的设计思想与具体实现,特别针对空对海单站只测方位与到达时间TMA(BTO-TMA)问题应用UKF和EKF(扩展卡尔曼滤波)进行了对照研究,建立了问题的离散非线性滤波估计模型,设计了典型的应用场景,给出了初值有偏和无偏两种情形下的Monte Carlo仿真运行结果;表明UKF在该应用背景下是切实可行的,具有更高的估计精度和更强的收敛特性。展开更多
文摘将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。
文摘针对传统粒子滤波目标跟踪算法存在粒子退化的问题,提出了基于马尔可夫链-蒙特卡罗(Markovchain Monte Carlo,MCMC)无味粒子滤波的目标跟踪算法。该算法采用无味卡尔曼滤波(unscented Kalmanfilter,UKF)生成粒子滤波的提议分布,来代替传统粒子滤波算法采用状态转移先验概率作为粒子滤波的提议分布,以改善滤波效果,然后在无味粒子滤波的基础上融合了典型的MCMC抽样算法(Metropolis Hastings,MH),从而可以减少传统粒子滤波未考虑当前量测对状态的估计作用所带来的影响。融合后的算法将当前量测信息融入到滤波过程中,并使采样粒子更加多样化。实验结果表明,该算法较传统方法在跟踪精度方面有显著的提高。
文摘探讨了TMA(目标运动分析)中基本的非线性估计问题,介绍了基于无味变换(Unscented Transform ation-UT)的无味卡尔曼滤波(Unscented Kalm an F iltering-UKF)算法的设计思想与具体实现,特别针对空对海单站只测方位与到达时间TMA(BTO-TMA)问题应用UKF和EKF(扩展卡尔曼滤波)进行了对照研究,建立了问题的离散非线性滤波估计模型,设计了典型的应用场景,给出了初值有偏和无偏两种情形下的Monte Carlo仿真运行结果;表明UKF在该应用背景下是切实可行的,具有更高的估计精度和更强的收敛特性。