Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are ...Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.展开更多
The thermodynamics and the growth kinetics of synthesis of the SiC whiskers (SiC w ) from rice hulls are studied in this paper. The results show that the intimate contact of SiO 2 with C in the rice hulls resulted in ...The thermodynamics and the growth kinetics of synthesis of the SiC whiskers (SiC w ) from rice hulls are studied in this paper. The results show that the intimate contact of SiO 2 with C in the rice hulls resulted in the formation of SiC particle (SiC p ) at lower temperature, and the external ash of the hulls (w (SiO 2 )>98%) is the main silicon source for SiCw growth. The metallic composite catalyst increases the selectivity for SiCw growth and the reaction rate. The growth mechanism of the SiCw can be characterized as the VLS (vapour liquid solid) with the presence of the whisker forming catalyst: from SiC nucleation through enlargement and growing with the <1 1 1> crystallographic orientation in a certain diameter, then the SiC w is a complete single crystal of β SiC. The generation reaction of SiO is the rate determing step for synthesis of SiC w .展开更多
In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burnin...In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.展开更多
基金supported by the National Key Basic Research Program of China (2013CB429700)the Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ200913)+1 种基金the National Natural Science Foundation of China (40830849)the National Special Fund for the Eleventh Five-Year Plan of COMRA (DY125-12-R-02 and DY125-11-R-05)
文摘Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.
文摘The thermodynamics and the growth kinetics of synthesis of the SiC whiskers (SiC w ) from rice hulls are studied in this paper. The results show that the intimate contact of SiO 2 with C in the rice hulls resulted in the formation of SiC particle (SiC p ) at lower temperature, and the external ash of the hulls (w (SiO 2 )>98%) is the main silicon source for SiCw growth. The metallic composite catalyst increases the selectivity for SiCw growth and the reaction rate. The growth mechanism of the SiCw can be characterized as the VLS (vapour liquid solid) with the presence of the whisker forming catalyst: from SiC nucleation through enlargement and growing with the <1 1 1> crystallographic orientation in a certain diameter, then the SiC w is a complete single crystal of β SiC. The generation reaction of SiO is the rate determing step for synthesis of SiC w .
文摘In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.