Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain ...Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.展开更多
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and in...Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber(CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.展开更多
文摘Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.
基金supported by the National Natural Science Foundation of China(Nos.61675043 and 81571726)the Natural Science Foundation of Fujian Province(Nos.2015J01006 and 2017J01742)the Doctoral Scientific Research Foundation of Jimei University(No.ZQ2016005)
文摘Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber(CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.