期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合多头自注意力机制的无接触心率估计模型
被引量:
1
1
作者
张鑫
杨长强
+1 位作者
殷若南
王梦茹
《计算机应用研究》
CSCD
北大核心
2022年第11期3390-3395,共6页
为了在光照变化和头部运动条件下实现准确稳定的无接触心率估计,基于U-Net模型提出一种融合多头自注意力机制的端到端心率估计模型rPPG-UNet。该模型通过使用U型编码器—解码器网络结构实现对生理特征的提取与重建,并使用Skip Connectio...
为了在光照变化和头部运动条件下实现准确稳定的无接触心率估计,基于U-Net模型提出一种融合多头自注意力机制的端到端心率估计模型rPPG-UNet。该模型通过使用U型编码器—解码器网络结构实现对生理特征的提取与重建,并使用Skip Connection连接编码器与解码器实现浅层时间特征的复用。该模型还融合多头自注意力机制来捕获生理特征的时间依赖性。最后,该模型采用多任务学习策略以提高心率估计的准确度,加速网络训练。在公开数据集上的实验结果表明,rPPG-UNet的性能优于其他基线模型,可以实现更准确的无接触心率估计。
展开更多
关键词
无接触心率估计
U-Net
多头自注意力机制
特征融合
多任务学习
下载PDF
职称材料
题名
融合多头自注意力机制的无接触心率估计模型
被引量:
1
1
作者
张鑫
杨长强
殷若南
王梦茹
机构
山东科技大学计算机科学与工程学院
出处
《计算机应用研究》
CSCD
北大核心
2022年第11期3390-3395,共6页
文摘
为了在光照变化和头部运动条件下实现准确稳定的无接触心率估计,基于U-Net模型提出一种融合多头自注意力机制的端到端心率估计模型rPPG-UNet。该模型通过使用U型编码器—解码器网络结构实现对生理特征的提取与重建,并使用Skip Connection连接编码器与解码器实现浅层时间特征的复用。该模型还融合多头自注意力机制来捕获生理特征的时间依赖性。最后,该模型采用多任务学习策略以提高心率估计的准确度,加速网络训练。在公开数据集上的实验结果表明,rPPG-UNet的性能优于其他基线模型,可以实现更准确的无接触心率估计。
关键词
无接触心率估计
U-Net
多头自注意力机制
特征融合
多任务学习
Keywords
contactless heart rate estimation
U-Net
multi-head self-attention
feature fusion
multi-task learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合多头自注意力机制的无接触心率估计模型
张鑫
杨长强
殷若南
王梦茹
《计算机应用研究》
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部