The purpose of this procedure was to optimize and improve a method that used for the determination of arsenic (Ⅲ) and arsenic (Ⅴ) in biological and environmental samples. The method is based on hydride generatio...The purpose of this procedure was to optimize and improve a method that used for the determination of arsenic (Ⅲ) and arsenic (Ⅴ) in biological and environmental samples. The method is based on hydride generation and atomic absorption spectrometry. For both As (Ⅲ) and As (Ⅴ) the parameters such as NaBH4, HCI concentration, and pH were optimized. Absorption signal of As (Ⅴ) was approximately 17% of As (Ⅲ) signal. Therefore, for estimation of As (Ⅲ) and As (Ⅴ) concentrations in various samples the difference between the absorbance obtained for arsenic, without and with previous treatment of samples with potassium iodide (KI), can be applied. The calibration graphs were linear (r〉0.99), and the detection limits of the method based on three times the standard deviation of the blank were 0.14 and 0.64 μL^-1 for As (Ⅲ) and As (Ⅴ), respectively. The relative standard deviation (R.S.D.) of measurements was less than 10%. As a means of checking performance method, water samples were spiked with known concentrations of both As (Ⅲ) and As (Ⅴ), and recovery above 94% was obtained. The proposed method was applied successfully to determine inorganic As (Ⅲ) and As (Ⅴ) in various environmental and total As in biological samples.展开更多
To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of...To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.展开更多
There is a need for determinations of soil organic carbon (SOC) and inorganic carbon (SIC) due to increasing interest in soil carbon sequestration. Two sets of soil samples were collected separately from the Yanqi Bas...There is a need for determinations of soil organic carbon (SOC) and inorganic carbon (SIC) due to increasing interest in soil carbon sequestration. Two sets of soil samples were collected separately from the Yanqi Basin of northwest China to evaluate loss-on-ignition (LOI) method for estimating SOC and SIC in arid soils through determining SOC using an element analyzer, a modified Walkley-Black method and a LOI method with combustion at 375℃ for 17 h and determining SIC using a pressure calcimeter method and a LOI procedure estimated by a weight loss between 375 to 800℃. Our results indicated that the Walkley-Black method provided 99%recovery of SOC for the arid soils tested. There were strong linear relationships(r > 0.93, P < 0.001) for both SOC and SIC between the traditional method and the LOI technique. One set of soil samples was used to develop relationships between LOI and SOC(by the Walkley-Black method), and between LOI and SIC(by the pressure calcimeter method), and the other set of soil samples was used to evaluate the derived equations by comparing predicted SOC and SIC with measured values. The mean absolute errors were small for both SOC (1.7 g C kg-1) and SIC(1.22 g C kg-1), demonstrating that the LOI method was reliable and could provide accurate estimates of SOC and SIC for arid soils.展开更多
Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence...Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence in Mediterranean ecosystems remains unclear. The aims of this study were to i) estimate soil DON in a wide set of Mediterranean ecosystems and compare this levels with those for other ecosystems; ii) describe temporal changes in DON and dissolved inorganic nitrogen (DIN) forms (NH+ and NO3), and characterize spatial heterogeneity within plant communities; and iii) study the relative proportion of soil DON and DIN forms as a test of Schimel and Bennett's hypothesis that the prevalence of different N forms follows a gradient of nutrient availability. The study was carried out in eleven plant communities chosen to represent a wide spectrum of Mediterranean vegetation types, ranging from early to late successional status. DON concentrations in the studied Mediterranean plant communities (0-18.2 mg N kg-1) were consistently lower than those found in the literature for other ecosystems. We found high temporal and spatial variability in soil DON for all plant communities. As predicted by the Schimel and Bennett model for nutrient-poor ecosystems, DON dominance over ammonium and nitrate was observed for most plant communities in winter and spring soil samples. However, mineral-N dominated over DON in summer and autumn. Thus, soil water content may have an important effect on DON versus mineral N dominance in Mediterranean ecosystems展开更多
文摘The purpose of this procedure was to optimize and improve a method that used for the determination of arsenic (Ⅲ) and arsenic (Ⅴ) in biological and environmental samples. The method is based on hydride generation and atomic absorption spectrometry. For both As (Ⅲ) and As (Ⅴ) the parameters such as NaBH4, HCI concentration, and pH were optimized. Absorption signal of As (Ⅴ) was approximately 17% of As (Ⅲ) signal. Therefore, for estimation of As (Ⅲ) and As (Ⅴ) concentrations in various samples the difference between the absorbance obtained for arsenic, without and with previous treatment of samples with potassium iodide (KI), can be applied. The calibration graphs were linear (r〉0.99), and the detection limits of the method based on three times the standard deviation of the blank were 0.14 and 0.64 μL^-1 for As (Ⅲ) and As (Ⅴ), respectively. The relative standard deviation (R.S.D.) of measurements was less than 10%. As a means of checking performance method, water samples were spiked with known concentrations of both As (Ⅲ) and As (Ⅴ), and recovery above 94% was obtained. The proposed method was applied successfully to determine inorganic As (Ⅲ) and As (Ⅴ) in various environmental and total As in biological samples.
基金supported by National Natural Science Foundation of China(Grant No.41030422)Strategic Leading Special Science and Technology from Academy of Chinese Academy of Sciences(Grant No.XDA05030100)
文摘To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.
基金Supported by the "Hundred Talents Program" of the Chinese Academy of Sciences
文摘There is a need for determinations of soil organic carbon (SOC) and inorganic carbon (SIC) due to increasing interest in soil carbon sequestration. Two sets of soil samples were collected separately from the Yanqi Basin of northwest China to evaluate loss-on-ignition (LOI) method for estimating SOC and SIC in arid soils through determining SOC using an element analyzer, a modified Walkley-Black method and a LOI method with combustion at 375℃ for 17 h and determining SIC using a pressure calcimeter method and a LOI procedure estimated by a weight loss between 375 to 800℃. Our results indicated that the Walkley-Black method provided 99%recovery of SOC for the arid soils tested. There were strong linear relationships(r > 0.93, P < 0.001) for both SOC and SIC between the traditional method and the LOI technique. One set of soil samples was used to develop relationships between LOI and SOC(by the Walkley-Black method), and between LOI and SIC(by the pressure calcimeter method), and the other set of soil samples was used to evaluate the derived equations by comparing predicted SOC and SIC with measured values. The mean absolute errors were small for both SOC (1.7 g C kg-1) and SIC(1.22 g C kg-1), demonstrating that the LOI method was reliable and could provide accurate estimates of SOC and SIC for arid soils.
基金Supported by the Ministerio Espanol de Ciencia e Innovacio'n of the Spanish government (Nos.REN2003-08620-C02-01 and CGL2006-13665-C02-01)
文摘Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence in Mediterranean ecosystems remains unclear. The aims of this study were to i) estimate soil DON in a wide set of Mediterranean ecosystems and compare this levels with those for other ecosystems; ii) describe temporal changes in DON and dissolved inorganic nitrogen (DIN) forms (NH+ and NO3), and characterize spatial heterogeneity within plant communities; and iii) study the relative proportion of soil DON and DIN forms as a test of Schimel and Bennett's hypothesis that the prevalence of different N forms follows a gradient of nutrient availability. The study was carried out in eleven plant communities chosen to represent a wide spectrum of Mediterranean vegetation types, ranging from early to late successional status. DON concentrations in the studied Mediterranean plant communities (0-18.2 mg N kg-1) were consistently lower than those found in the literature for other ecosystems. We found high temporal and spatial variability in soil DON for all plant communities. As predicted by the Schimel and Bennett model for nutrient-poor ecosystems, DON dominance over ammonium and nitrate was observed for most plant communities in winter and spring soil samples. However, mineral-N dominated over DON in summer and autumn. Thus, soil water content may have an important effect on DON versus mineral N dominance in Mediterranean ecosystems