A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an em...A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.展开更多
A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an...A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.展开更多
基金Supported by Science and Technology Commission of Shanghai Municipality (No. 0212nm008).
文摘A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.
基金Supported by the National "863" Project (No. 2001 AA 320206)and Shanghai Nano Special Foundation(No. 0120nm034).
文摘A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.